
GTKlos extension
Building GUI with STklos

Erick Gallesio

Table of Contents

1. Introduction. 1

1.1. Installation . 1

1.2. Getting started . 2

2. Container widgets. 6

2.1. Class <window>. 6

2.2. Class <vwindow>. 7

2.3. Class <hwindow> . 8

2.4. Class <gtk-box> . 8

2.5. Class <hbox>. 9

2.6. Class <vbox>. 10

2.7. Class <frame>. 10

2.8. Class <hframe> . 11

2.9. Class <vframe> . 11

2.10. Class <grid> . 11

2.11. Class <header-bar>. 13

2.12. Class <toolbar> . 15

2.13. Class <scroll> . 18

3. Display widgets . 20

3.1. Class <image> . 20

3.2. Class <label>. 21

3.3. Class <progress-bar> . 21

3.4. Class <scale>. 22

3.5. Class <separator> . 23

4. Signal and Events . 24

4.1. Event primitives . 24

4.2. Signal primitives. 27

5. Button widgets . 30

5.1. Class <button> . 30

5.2. Class <check-button> . 31

5.3. Class <radio-button> . 32

5.4. Class <combobox> . 33

5.5. Class <entry-combobox> . 34

5.6. Menus . 34

6. Entries and Text widgets . 42

6.1. Class <entry> . 42

6.2. Class <text>. 43

7. Dialog box widgets . 45

7.1. Class <dialog> . 45

7.2. Class <color-dialog> . 47

7.3. Class <file-dialog> . 48

7.4. Class <font-dialog> . 49

8. Basic Classes . 51

8.1. Class <gtk-object> . 51

8.2. Class <gtk-destroyed-object> . 51

8.3. Class <gtk-widget> . 52

8.4. Class <gtk-container>. 54

8.5. Class <gtk-misc> . 55

8.6. Class <gtk-orientable> . 55

8.7. Class <gtk-menu-shell> . 56

8.8. Class <gtk-menu-item> . 56

9. Canvases . 57

9.1. Class <canvas>. 57

9.2. Canvas Items . 58

9.3. Canvas Base Classes . 66

10. Misc. functions . 71

Index . 73

Chapter 1. Introduction

This extension permits to easily program GUI (Graphical User Interfaces) using the OO model of

STklos. The model used here, is very similar to the one originally defined in STk Scheme and is

discussed in the papers image: - Programming Graphical User Interfaces with Scheme, and in -

Designing a Meta Object Protocol to wrap a Standard Graphical Toolkit.

Furthermore, this OO model allows you to define your own widgets thanks to the MOP (Meta Object

Protocol) of STklos.

1.1. Installation

The extension is in the extensions/gtklos directory of STklos. It is configured when you run

configure in the main directory of STklos. So, to compile it you just need to run

$ make

The demos directory contains several demos that can be run separately or with the run-demos script

in this directory. Running this script, with

$ cd demos

$./run-demos

you should obtain something like:

1

https://conservatory.scheme.org/stk/
https://www.gallesio.org/Publis/jfp03.pdf
https://www.gallesio.org/Publis/Isotas96.pdf

If everything is correct, you can install the GTklos extension with a make install in the gtklos

directory. Everything will be installed in a sub-directory of the main STklos installation

1.2. Getting started

To use the GTklos extension you need to import the (stklos gtklos) library. This can be done with:

;; Import GTKlos to access its exported symbols

(import (stklos gtklos))

1.2.1. A first window

The first thing you must do to make an interface consists to create an instance of the class <window>.

For instance,

stklos> (define w (make <window> #:title "A first window"))

will create a window with a title set to "A first window". You can see all the slots that can be set in w

by using describe:

stklos> (describe w)

#[<window> 7b3a42174180] is an instance of class <window>.

Slots are:

2

 %children = ()

 %data = ()

 %event = ()

 border-width = 0

 can-default = #f

 can-focus = #f

 children = ()

 expand = #f

 focus-on-click = #t

 has-default = #f

 has-focus = #f

 height = 200

 height-request = -1

 modal = #f

 name = ""

 parent = #f

 resizable = #t

 sensitive = #t

 show = #t

 title = "A first window"

 tooltip = #f

 transient = #f

 visible = #t

 wid = #[gtk-window-pointer 58fcc205b180 @ 7b3a42174150]

 width = 200

 width-request = -1

stklos>

Now that the window is created, we need to start the GTK+ interaction loop to see it effectively on

our screen. This can be done by calling

• (start-interactive-gtk), or

• (gtk-main)

As said by its name, the fist form is preferred when we create an interface interactively in the REPL.

This form, call the GTK+ event loop when your keyboard is idle. The second form is generally used

when you create a script and don’t use the REPL.

As we can see, the width and the height of this window are reflected in the width and height of w.

Hereafter, are some manipulation with the width of w:

;; Use start-interactive-gtk to develop in the REPL

stklos> (start-interactive-gtk)

;; Setting the width to 400

stklos> (slot-set! w 'width 400)

;; Reading back the value

stklos> (slot-ref w 'width)

400

3

;; Since accessors are defined on all slots we can also do

stklos> (width w)

400

stklos> (set! (width w) 300)

stklos> (width w)

300

Of course, we can also define the widget size at creation time with a class such as

stklos> (define w (make <window> #:title "STklos window"

 #:width 400

 #:height 100))

1.2.2. Adding a button

We can add a button to a the previous window bay making an instance of a <button>:

(define b (make <button> #:parent w #:text "A button"))

By saying that the parent of b is w, the window we have just created just before, this button will be

inside the w window. So, we will obtain:

Using describe, on b we have:

stklos> (describe b)

#[<button> 7b3a3c25fd50] is an instance of class <button>.

Slots are:

 %children = ()

 %data = ()

 %event = ()

 border-width = 0

 can-default = #f

 can-focus = #t

 children = ()

 command = #f

 expand = #f

 focus-on-click = #t

 has-default = #f

 has-focus = #f

 height = 1

4

 height-request = -1

 image = #f

 image-position = left

 name = ""

 parent = #[<window> 7b3a42174180]

 relief = normal

 sensitive = #t

 show = #t

 text = "A button"

 tooltip = #f

 use-underline = #t

 visible = #t

 wid = #[gtk-button-pointer 58fcc20598a0 @ 7b3a3c25fd20]

 width = 1

 width-request = -1

 xalign = 0.5

 yalign = 0.5

stklos>

The slot command is particularly important on buttons. It contains the callback function that will be

called when we click (with left mouse button) on b. The function will be called with two parameters

the widget which has been clicked and an event object which contains all the information on the

event itself (more on that in Section 4.2.4).

We can add a command to the previous button with:

stklos> (set! (command b)

 (lambda (w e)

 (printf "Button ~s was clickedn" w)))

Now, when clicking the button b a message will be printed.

This ends this small introduction on GTKlos.

5

Chapter 2. Container widgets

A container is a widget that can contain other widgets. It permits to create new windows or

organize le layout of a multi widget GUI component.

2.1. Class <window>

The <window> class defines a new window. By default, a new window is mapped on the screen when

it is created and it’s size is 200x200.

Inherited classes: <gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes: <dialog>

<vwindow>

<hwindow>

Direct slots: height

modal

resizable

title

transient

width

Direct (non accessor) methods: realize-widget (<window> <top>)

Slots

• height is the height of the window. The default is 200 pixels.

• modal is a boolean. It indicates if the window is in modal mode. A modal window prevents

interaction with other windows in the same application.

• resizable indicates if the window size can be changed.

• title indicates the string to display in the window title bar.

• transient is a boolean. It indicates if the window is transient.

• width is the width of the window. The default is 200 pixels.

Method

• realize-widget see general documentation on realize-widget.

All these slots have an associated accessor that can be used to read or write the value of the slot. For

instance

6

stklos> (define w (make <window> :title "A window"))

;; w

stklos> (title w)

"A window"

stklos> (set! (title w) "Title changed")

stklos> (title w)

"Title changed"

stklos>

2.2. Class <vwindow>

A <vwindow> is a utility class. It is a window which contains a vertical box, to arrange vertically some

widgets in it. See example below.

Inherited classes: <window>

<gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots:

Direct (non accessor) methods:

Example

stklos> (define w (make <vwindow> :title "Vertical window" :width 400))

;; w

stklos> (dolist (b '("One" "Two" "Three")) (make <button> :text b :parent w))

stklos>

This will display the following window:

7

Note

Specifying that a button has w as parent permits to embed it in the w container.

2.3. Class <hwindow>

A <hwindow> is a utility class. It is a window which contains an horizontal box, to arrange

horizontally some widgets in it.

Inherited classes: <window>

<gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots:

Direct (non accessor) methods:

2.4. Class <gtk-box>

A <gtk-box> is a simple container which arranges child widgets into a single row or column,

depending upon the value of orientation property.


Normally, a class name prefixed by <gtk- is an internal class which is not exported

bt the GTKlos library. This class name has been choose, because the name <box> is

already used for the normal STklos boxes (see SRFI-111).

Inherited classes: <gtk-orientable>

<gtk-widget>

<gtk-object>

Directly inheriting classes: <vbox>

<hbox>

Direct slots: baseline-position

expand

fill

homogeneous

padding

spacing

Direct (non accessor) methods: container-add! (<gtk-box> <gtk-widget> . <top>)

realize-widget (<gtk-box> <top>)

8

Slots

• baseline-position indicates the baseline position (see GTK documentation for more

information)

• expand is a boolean which indicates if children must be expanded by default

• fill is a boolean which indicates if children fill the empty space by default.

• homogeneous is a boolean. It indicates if all children of the box are given equal space in the

box.

• padding is teh default value of the padding

• spacing is the number of pixels between children of the box (default is 0).

Methods

• container-add! accepts a list of keyword parameters after the widget to add to the container.

The possible values for these keyword parameters are:

◦ expand (defaults to the value of slot expand slot of the box)

◦ fill (defaults to the value of slot fill slot of the box)

◦ padding (defaults to the value of slot padding slot of the box)

◦ end add element to the end (default to #f)

• realize-widget see general documentation on realize-widget

Notes

One of the most important slot of this class is the slot orientation (not shown here, since it is

inherited from the class <gtk-orientable>). Its value is a symbol which can be one of the symbols

horizontal or vertical.

2.5. Class <hbox>

This utility class can be used to define a <gtk-box> whose orientation is initialized to horizontal.

Inherited classes: <gtk-box>

<gtk-orientable>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots:

Direct (non accessor) methods: initialize-instance (<hbox> <top>)

Method

• initialize-instance see general documentation on initialize-instance

9

2.6. Class <vbox>

This utility class can be used to define a <gtk-box> whose orientation is initialized to vertical.

Inherited classes: <gtk-box>

<gtk-orientable>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots:

Direct (non accessor) methods: initialize-instance (<vbox> <top>)

Method

• initialize-instance see general documentation on initialize-instance

2.7. Class <frame>

A <frame> widget surrounds its child with a decorative frame and an optional label.

Inherited classes: <gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes: <vframe>

<hframe>

Direct slots: shadow

title

xalign

yalign

Direct (non accessor) methods: realize-widget (<frame> <top>)

Slots

• shadow can be one of the following symbols none, in, out, etched-in or etched-out.

• title contains the label of the frame

• xalign is a float to adjust the position of the title (0: left, 1: right, 0.5:default)

• yalign is a float to adjust the position of the title (0: top, 1: bottom, 0.5:default)

10

2.8. Class <hframe>

This utility class permits to define a frame which contain an horizontal box that can be filled with

components that are arranged horizontally.

Inherited classes: <frame>

<gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots:

Direct (non accessor) methods:

2.9. Class <vframe>

This utility class permits to define a frame which contain an vframe box that can be filled with

components that are arranged vertically.

Inherited classes: <frame>

<gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots:

Direct (non accessor) methods:

2.10. Class <grid>

A <grid> widget is a container which arranges its child widgets in rows and columns, with arbitrary

positions and horizontal/vertical spans.

11

Inherited classes: <gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: column-homogeneous

column-spacing

row-homogeneous

row-spacing

Direct (non accessor) methods: container-add! (<grid> <gtk-widget> . <top>)

realize-widget (<grid> <top>)

Slots

• column-homogeneous is a boolean which indicates whether all columns of the grid will

have the same width.

• column-spacing is the amount of space between columns of the grid.

• row-homogeneous is a boolean which indicates whether all rows of the grid will have the

same width.

• row-spacing is the amount of space between rows of the grid.

Methods

• container-add! accepts a list of keyword parameters after the widget to add to the container.

The possible value for these keyword parameters are:

◦ left is the column position of the added widget (starting from 1)

◦ top is the line position of the added widget (starting from 1)

◦ width is the width position of the added widget

◦ height is the height position of the added widget

• realize-widget see general documentation on realize-widget

Example

stklos> (define w (make <window> :title "Grid demo"))

;; w

stklos> (define g (make <grid> :parent w))

;; g

;; Create 5 buttons

stklos> (define b (map (lambda (x) (make <button> :text x :width 200))

 '("Button #1" "Button #2" "Button #3" "Button #4" "Button #5")))

;; b

;; Add them to the grid

stklos> (container-add! g (list-ref b 0) #:left 0 #:top 0 :width 2)

stklos> (container-add! g (list-ref b 1) #:left 0 #:top 1)

stklos> (container-add! g (list-ref b 2) #:left 1 #:top 1 :height 2)

stklos> (container-add! g (list-ref b 3) #:left 0 #:top 2)

stklos> (container-add! g (list-ref b 4) #:left 0 #:top 3)

12

This will display the following window:

2.11. Class <header-bar>

A <header-bar> is similar to a horizontal <gtk-box>. Furthermore, this widget can add typical

window frame controls, such as minimize, maximize and close buttons, or the window icon. It is

often used at the top of a <vwindow>

Inherited classes: <gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: decoration-layout

decoration-layout-set

has-subtitle

show-close-button

subtitle

title

Direct (non accessor) methods: realize-widget (<header-bar> <top>)

Slots

• decoration-layout is a string used to indicate the layout of the buttons (see example below)

• decoration-layout-set is a boolean used to know if the decoration layout has been set

• has-subtitle reserves space for a subtitle (even if not currently set).

• show-close-button indicates if the decoration buttons (not only the close button!!) are

shown or not. Its default value is #f

• subtitle indicates the subtitle of the header bar (note that place is always reserved for a

subtitle, except is has-subtitle is set to #f.

• title indicates the title of the header bar.

13

Method

• realize-widget see general documentation on realize-widget

Exemple

The following example illustrates the use of a header bar.

(define w (make <vwindow> :width 400))

(define h (make <header-bar> :title "I'm the title"

 :subtitle "I'm the subtitle"

 :parent w

 :decoration-layout "minimize,maximize:close"

 :show-close-button #t))

(define l (make <label> :text "I'm the content of the window"

 :parent (list w :expand #t)))

Execution of this code will display the following window

Notes

1. The decoration-layout slot is set here to "minimize, maximize:close" to place

◦ the minimize and maximize buttons on the left (since they are before the ':' character)

◦ the close button on the right (since it is after the ':' character)

2. The show-close-button is set to #t so display the control buttons

3. The parent is set here to w with an indication that it must be expanded into it container (w

here). See the documentation of parent of the <gtk-widget> class.

14

2.12. Class <toolbar>

A <toolbar> is container whose constituents are instance of the <toolbar-item> class.

Inherited classes: <gtk-container>

<gtk-orientable>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: icon-size

show-arrow

toolbar-style

Direct (non accessor) methods: add-items-to-toolbar (<toolbar> <top>)

container-add! (<toolbar> <toolbar-item> <integer>)

container-add! (<toolbar> <toolbar-item>)

realize-widget (<toolbar> <top>)

Slots

• expand is a boolean. It indicates if toolbar items are expanded or not (default to #f)

• icon-size can be one of the following symbols small, medium, large or huge.

• show-arrow is the boolean. It indicates if the toolbar as an overflow menu.

• toolbar-style: can be one of the following symbols icons, text, both or both-horizontal.

Methods

• add-items-to-toolbar is a utility method to easily populate the components of a toolbar. It

takes a toolbar and a list describing its components with the following convention, for each

item of the list:

1. an empty list specify to add a new separator, that is an instance of <toolbar-separator-

item>, to the toolbar

2. a list specifies that a new <toolbar-icon-item> must be created and added to the toolbar.

The content of the list are the parameters that must be passed during the creation of the

icon.

• container-add!: see general documentation on container-add!.

15

Exemple

(define w (make <vwindow> :title "Test header" :width 300))

(define tb (make <toolbar> :parent w))

(add-items-to-toolbar tb ;; populate the toolbar

 '((:text "Play" :icon-name "media-playback-start")

 (:text "Pause" :icon-name "media-playback-pause")

 () ;; <== A separator

 (:text "Stop" :icon-name "media-playback-stop")))

Execution of this code will display the following window

Notes

1. For the sake of simplicity, the buttons are inactive here (use the command slot to add an action

when the toolbar button is clicked).

2. Icons her are stock buttons they are searched by the GTK library in the standard directory

(generally /usr/share/icons on GNU/Linux).

3. Since <gtk-toolbar> inherits from <gtk-orientable>, a toobar can be horizontal or vertical.

2.12.1. Class <toolbar-item>

The <toolbar-item> class is the parent class of the toolbar items classes that can be added to a to a

GTK toolbar. It offers only two methods (container-add) to add an item to a toolbar.

16

Inherited classes: <gtk-widget>

<gtk-object>

Directly inheriting classes: <toolbar-button-item>

<toolbar-separator-item>

Direct slots:

Direct (non accessor) methods: container-add! (<toolbar> <toolbar-item> <integer>)

container-add! (<toolbar> <toolbar-item>)

Methods

There are two methods of the generic function container-add! to add an item to a container:

• with 2 parameters, the methods permit to append the new item at the end of already added

items.

• with 3 parameters, the method adds the given item at the position given as third parameter

(an integer). If the position is 0 the item is prepended to the start of the toolbar. If it is

negative, the item is appended to the end of the toolbar.

2.12.2. Class <toolbar-separator-item>

The class <toolbar-separator-item> permits to define a separator to a toolbar.

Inherited classes: <toolbar-item>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots:

Direct (non accessor) methods: realize-widget (<toolbar-separator-item> <top>)

Methods

• realize-widget see general documentation on realize-widget.

2.12.3. Class <toolbar-button-item>

The class <toolbar-separator-item> permits to define a button to a toolbar. The button can have an

image and a text.

17

Inherited classes: <toolbar-item>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: command

icon-name

text

Direct (non accessor) methods: realize-widget (<toolbar-button-item> <top>)

Slots

• command is identical to the command associated to a button (see general documentation on

command slot)

• icon-name is a string which contains is the name of the themed icon displayed on the item.

Icons are searched by the GTK library in the standard directory (generally /usr/share/icons

on GNU/Linux).

• text is the text of the button item.

Method

• *realize-widget: see general documentation on realize-widget

2.13. Class <scroll>

The <scroll> class represents a container that accepts a single child widget and makes that child

scrollable using scollbars.

Inherited classes: <gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: hpolicy

max-content-height

max-content-width

min-content-height

min-content-width

overlay-scrolling

vpolicy

window-placement

Direct (non accessor) methods: realize-widget (<scroll> <top>)

Slots

• hpolicy determines how the size should be computed to achieve the one of the visibility

18

mode for the horizontal scrollbar. It’s value can be one of the symbols always, automatic,

never or external (default is automatic).

• max-content-height is the maximum content height of the scrolled window, or -1 if not set.

• max-content-width is the maximum content width of the scrolled window, or -1

• min-content-height is the minimum content height of scrolled_window, or -1 if not set.

• min-content-width is the minimum content width of scrolled_window, or -1 if not set.

• overlay-scrolling indicates whether overlay scrolling is enabled or not. If it is, the scrollbars

are only added as traditional widgets when a mouse is present. Otherwise, they are

overlayed on top of the content, as narrow indicators.

• vpolicy determines how the size should be computed to achieve the one of the visibility

mode for the vertical scrollbar. It’s value can be one of the symbols always, automatic, never

or external (default is automatic).

• window-placement indicates where the scollbars are placed. It’s value can e one of the

symbols top-left, bottom-left, top-right or bottom-right.

Method

• realize-widget see general documentation on realize-widget.

Example

(let* ((win (make <vwindow> #:title "Scroll Demo"

 #:width 300 #:height 200

 #:expand #t #:fill #t))

 (scroll (make <scroll> #:parent win :overlay-scrolling #f))

 (grid (make <grid> #:parent scroll #:row-spacing 10 #:column-spacing 10)))

 ;; Build a set of buttons in the grid contained in <scroll>

 (dotimes (i 100)

 (make <button>

 #:text (format "Button #~A" i)

 #:parent (list grid #:top (quotient i 5) #:left (modulo i 5)))))

It will display the following window:

19

Chapter 3. Display widgets

A display widget is a GUI component which shows some information (a text, an image, or a progress

bar for instance)

3.1. Class <image>

The class <image> permits to display an image.

Inherited classes: <gtk-misc>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: file-name

icon-name

icon-size

Direct (non accessor) methods: get-image-pixbuf (<image>)

realize-widget (<image> <top>)

Slots

• file-name designates a file containing the image to display. If the file cannot be found. a

"broken image" icon will be displayed. If the file contains an animation, the image will be

animated. The image-path parameter object is used to find the image file (see below).

• icon-name: is a string which contains is the name of the themed icon displayed on the item.

Icons are searched by the GTK library in the standard directory (generally /usr/share/icons

on GNU/Linux).

• icon-size can be one of the following symbols small, medium, large or huge.

Methods

• get-image-pixbuf return a C pointer on the pixbuf used to represent the image. This can be

useful to insert an image in a canvas.

• realize-widget see general documentation on realize-widget.

Parameter object

• image-path is a parameter object which denotes the paths to be searched when specifying a

file name with the file-name slot. The default path contains the current directory and a

directory depending of STklos installation directory. Alternatively, the default path can also

be specified with the shell variable STKLOS_INDEX_TERM.

20

3.2. Class <label>

A <label> permits to define a text widget which displays a small text.

Inherited classes: <gtk-misc>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: justify

selectable

text

Direct (non accessor) methods: realize-widget (<label> <top>)

Slots

• justify slot may contain one of the following symbols: left, right, center or fill.

• selectable isa boolean. If #t, the user can select text from the label, for copy-and-paste.

• text slot contains the text of the label.

Method

-realize-widget see general documentation on realize-widget.

3.3. Class <progress-bar>

A <progress-bar> can be used to display the progress of a long running operation; it can be used in

two different modes: percentage mode and activity mode.

Inherited classes: <gtk-widget>

<gtk-orientable>

<gtk-object>

Directly inheriting classes:

Direct slots: inverted

pulse-step

show-text

text

value

Direct (non accessor) methods: progress-bar-pulse (<progress-bar>)

realize-widget (<progress-bar> <top>)

21

Slots

• inverted is a boolean. It permits to invert the growing direction of a progress bar (form top

to bottom for vertical progress bars and from left to right for horitontal ones).

• pulse-step indicates the fraction of the progress bar used to advance to the next step.

• show-text is a boolean used to indicate if a text is shown in the progress bar. The shown text

is either the value of the text slot or, if not set, the value of the value slot, as a percentage.

• text is a string. It is the legend of the progress bar.

• value denotes the fraction of the task which is already done. Setting this slot permit to use

the progress bar in percentage mode.

Methods

• progress-bar-pulse can be used to indicate that some progress has been made. The progress

bar enters “activity mode,” where a block bounces back and forth.

• realize-widget see general documentation on realize-widget.

3.4. Class <scale>

The class <scale> defines a slider control used to select a numeric value.

Inherited classes: <gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: command

digits

draw-value

has-origin

increment

lower

orientation

upper

value

value-pos

Direct (non accessor) methods: realize-widget (<scale> <top>)

Slots

• command contains a function that will be called when the value of the scale is changed. See

general description on the the command slot in Chapter 4.

• digits specifies the number of decimal places that are displayed in the value.

• draw-value is a boolean. It indicates whether the current value is displayed.

• has-origin is a boolean. It indicates if the scale has an origin.

22

• increment

• lower is the minimum possible value of the scale.

• orientation indicates the orientation of the scale. Warning: it is a read-only slot.

• upper is the maximum possible value of the scale.

• value is the value of the scale. Setting it will move the scale.

• value-pos indicates the position where the value is displayed. Its value can be the symbol

top, bottom, left or right.

Method

• *realize-widget see general documentation on realize-widget.

3.5. Class <separator>

A <separator> is a horizontal or vertical separator widget, used to group the widgets within a

window. It displays a line with a shadow to make it appear sunken into the interface.

Inherited classes: <gtk-orientable>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots:

Direct (non accessor) methods: realize-widget (<separator> <top>)

Method

• realize-widget see general documentation on realize-widget.

23

Chapter 4. Signal and Events

When a user interacts with a GTklos with an input device (e.g. moves a mouse or presses a key on

the keyboard), GTK receives events from the windowing system. Those events are generally

directed to a widget (the area under the pointer mouse for mouse events or the focused widget for a

keyboard event). For more information on GTK events you can see The GTK Input and Event

Handling Model chapter in GTK documentation.

4.1. Event primitives

The GTklos STklos extension defines a new object type called GTK-event to handle events. Some

primitives are also defined.

STklos procedure

(get-gtk-event)

This function returns a new GTK-event object representing the event currently processed by GTK. If

no event is processed this function returns #f

STklos procedure

(event-type ev)

GTK events can have different types, depending of the event occuring on a GTklos widget. The

function event-type returns an information on the type of the event as a symbol. The possible

values returned by this function can be one of the following symbols:

NOTHING DELETE DESTROY EXPOSE

MOTION BUTTON-PRESS BUTTON-RELEASE KEY-PRESS

KEY-RELEASE ENTER LEAVE FOCUS-IN

FOCUS-OUT CONFIGURE MAP UNMAP

PROPERTY SELECTION-CLEAR SELECTION-REQUEST SELECTION-NOTIFY

PROXIMITY-IN PROXIMITY-OUT DRAG-ENTER DRAG-LEAVE

DRAG-MOTION DRAG-STATUS DROP-START DROP-FINISHED

CLIENT-EVENT VISIBILITY

See GTK documentation for more information.

24

https://docs.gtk.org/gtk3/input-handling.html
https://docs.gtk.org/gtk3/input-handling.html

STklos procedure

(event-x ev)

The primitive event-x returns the event window relative x coordinates from the ev event. It returns

#f if the the given event does not contain such a coordinate.

STklos procedure

(event-y ev)

The primitive event-y returns the event window relative y coordinates from the ev event.It returns

#f if the the given event does not contain such a coordinate.

STklos procedure

(event-char ev)

The primitive event-char returns the character associated to the event ev if it is a key press or key

release event (the result is a Scheme character). If a key is not pressed or released, the function

returns #f.

STklos procedure

(event-keyval ev)

Returns the keyval associated to event ev as an integer, or #f if it does not exists.

STklos procedure

(event-keycode ev)

Returns the keycode associated to event ev as an integer, or #f if it does not exists.

STklos procedure

25

(event-modifiers ev)

Returns a list of the modifiers associated to the ev event. The components of the list can be the

following symbols

• shift

• lock

• control

• mod1, mod2, mod3, mod4 or mod5

If no modifier is pressed. The function returns the empty list.

Example

(define w (make <vwindow> :title "Testing events" :width 300 :height 40))

;; define an entry for the test

(define e (make <entry>

 :placeholder-text "Press any mouse button on this entry"

 :parent (list w :expand #t :fill #t)))

;; Connect an event handler to the e entry

(event-connect e "button-press-event"

 (lambda (wid ev)

 (eprintf "Button pressed. Modifiers: ~Sn"

 (event-modifiers ev))))

⇒

Button pressed. Modifiers: ()

Button pressed. Modifiers: (control)

Button pressed. Modifiers: (control shift)

Button pressed. Modifiers: (mod1 control shift)

See also the event-connect primitive for details.

STklos procedure

(event-button ev)

Returns the number of the button involved in the event ev. If ev doesn’t contain a button, event-

button returns #f.

26

STklos procedure

(event-describe ev)

This primitive prints on the current error port some information on the ev event.

Result looks like this

vent description #[GTK-event 707c2c5a9ea0]

 type: KEY-PRESS

 button: #f

 modifiers: (shift)

 char: #H

 keyval: 72

 keycode: 43

 x: #f

 y: #f

4.2. Signal primitives

4.2.1. Notion of signal

A GTKlos application is, in fact, an event driven application. When an event occurs (a mouse click, a

mouse motion, …), the application may react to this event. If there no event, the application is

generally idle. When an event reaches a widget, it may react to this event by emitting a signal. A

GTKlos program can connect a specific callback to a signal. So, a callback is a kind of handler

functions in charge of the signal.

4.2.2. Event callback

A signal name is a string (such as "clicked" "enter", "leave", "destroy", …). All GTKlos callbacks are

Scheme functions with two parameters:

1. the widget receiving the event

2. the event itself

4.2.3. Event connection

To handle a signal, we can add an event handler for this signal. The connection between the signal

and the event is done by the event-connect primitive. This function takes three parameters

1. the widget ti which we want to connect an handler

2. the name of the signal sent when this event occurs

27

3. the callback function


Each widget has a given set of possible signal names that it sends to the application

(see the GTK+ documentation for more information).

Hereafter is an example which uses two calls to event-connect

(define win (make <vwindow> :title "Demo window" :width 300 :height 40))

(define but (make <button> :text "Test button" :parent win))

(event-connect but "clicked"

 (lambda (wid ev)

 (eprintf "Widget ~S was clickedn" wid)

 (event-describe ev)))

(event-connect but "enter"

 (lambda (wid _) (eprintf "We enter the button ~Sn" wid)))

An example of output:

Widget #[<button> 7b70477ab0c0] was clicked <= ①

Event description #[GTK-event 7b70477bd720] <= ②

 type: BUTTON-RELEASE

 button: 1

 modifiers: ()

 char: #f

 keyval: #f

 keycode: #f

 x: 50.0625

 y: 23.7734375

We see here that we have:

1. the mouse enters in the button (event "enter")

2. the button 1 has been pressed (event "clicked")


event-connect connects a callback function to a signal for a particular object. The

handler will be called before the default handler for the signal. To connect a

callback that will be called after the default handler, you can use event-connect-

after.

4.2.4. The command slot

Numerous GTKlos widgets have a slot named command which permits to fast-connect a "clicked"

signal to a widget. This signal is generally sent by reactive widgets when the button 1 or the mouse

is clicked over the widget. Hence, the connection of the "clicked" signal of the previous example can

28

be done at the button definition:

(define but (make <button> :text "Test button" :parent win

 :command (lambda (wid ev)

 (eprintf "Widget ~S was clickedn" wid)

 (event-describe ev))))

29

Chapter 5. Button widgets

5.1. Class <button>

A <button> widget is generally used to trigger a callback function that is called when the button is

pressed.

Inherited classes: <gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes: <check-button>

Direct slots: command

image

image-position

relief

text

use-underline

xalign

yalign

Direct (non accessor) methods: realize-widget (<button> <top>)

Slots

• command denotes the callback called when the button is clicked (see command slot).

• image contains the child widget to appear next to the button text.

• image-position is a symbol used to define the position of the image relative to the text inside

the button. It’s value can be one of the symbols left, right, top, bottom.

• relief is a symbol describing the relief style of the button. Its value can be the normal or none.

• text is a string which contains the button label.

• use-underline if true, an underline in the text of the button label indicates the next

character should be used for the mnemonic accelerator key.

• xalign is a float that can be used to control the horizontal position of button content (0.0 is

left and 1.0 is right). The default value is 0.5.

• yalign is a float that can be used to control the vertical position of button content (0.0 is top

and 1.0 is bottom). The default value is 0.5.

Method

• realize-widget see general documentation on realize-widget.

Here is a simple button with a text and an image. Clicking on the button, will launch the emacs

editor:

30

(let ((w (make <vwindow> :title "Button test" :width 300 :height 40)))

 ;; create a button with a text and an image

 (make <button> :text " Emacs "

 :image (make <image> :icon-name "emacs")

 :parent w

 :command (lambda (e w) (system "emacs &"))))

This code displays a window with a the emacs button:

5.2. Class <check-button>

A <check-button> is a button with a toggle button displayed next to the button label.

Inherited classes: <button>

<gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes: <radio-button>

Direct slots: value

Direct (non accessor) methods: realize-widget (<check-button> <top>)

Slot

• value is a boolean. It indicates if the check button is on or off.

Method

• realize-widget* see general documentation on realize-widget.

(let ((w (make <vwindow> :title "Check button test" :width 300 :height 40)))

 (make <check-button> :text "Bold" :parent w)

 (make <check-button> :text "Italic" :parent w :value #t))

This code displays the following window:

31

5.3. Class <radio-button>

A <radiobutton> is similar to a check button. Radio buttons are generally pcas in a group of radio

buttons. When one is selected, all other radio buttons in the same group are deselected. It is one

way of giving the user a choice from many options.

Inherited classes: <check-button>

<button>

<gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: radio-selected

sibling

Direct (non accessor) methods: initialize-instance (<radio-button> <top>)

radio-group (<radio-button>)

realize-widget (<radio-button> <top>)

Slots

• radio-selected contains the radio button which is selected in the radio-button’s group. For-

instance the expression (text (radio-selected b)) can be used to find the label string of the

radio group to which the button b belongs. Note any button of the group can be used here to

find the selected radio button.

• sibling is a read-only slot. It contains the value of the #:sibling option passed when the

widget was initialized. See initialize-instance below.

Methods

• initialize-instance for radio buttons takes care of the #:sibling option which can be passed

during their creation. If no sibling is passed (or is #f), the radio button creates a new group

and register it in this group. If a sibling is passed, it must be a radio button and the new

created button will be registered in the same group of this sibling radio button.

• radio-group returns a list of all the buttons of the group to which belongs the radio button

passed as parameter.

• realize-widget see general documentation on realize-widget.

(let* ((w (make <vwindow> :title "Radio button test" :width 300 :height 40))

 (b1 (make <radio-button> :text "Small" :parent w))

 (b2 (make <radio-button> :text "Normal" :parent w :sibling b1))

 (b3 (make <radio-button> :text "Big" :parent w :sibling b1)))

 (set! (radio-selected b1) b2)) ;; Select button b2 instead of the group leader b1

32

The evaluation of this code will display the following window.

5.4. Class <combobox>

A <combobox> permits the user to choose from a list of valid choices. It displays the selected choice.

When activated, the combo box displays a popup with a list of valid choices.

Inherited classes: <gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes: <entry-combobox>

Direct slots: command

items

value

Direct (non accessor) methods: container-add! (<combobox> <string>)

container-add! (<combobox> <top>)

realize-widget (<combobox> <top>)

Slots

• command contains the callback function that will be used when an entry is selected.

• items is a list of strings. It represents the correct values for the combo box.

• value is the current selected value of in the combo box. If no value is selected, this slot is #f.

Methods

• container-add! permits to append a value to the end of the list of items. If the value given is

not a string, it is converted before to a string.

• realize-widget see general documentation on realize-widget.

Example

(let ((w (make <vwindow> :title "Combo box test" :width 300 :height 40)))

 (make <combobox> :parent w :items '("XS" "S" "M" "L" "XL")

 :value "M"

 :command (lambda (w e)

 (printf "You have selected ~Sn" (value w)))))

33

5.5. Class <entry-combobox>

An <entry-combobox> is similar to a <combo-box>, excepts that its value can be edited.

Inherited classes: <combobox>

<gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: has-frame

value

Direct (non accessor) methods: realize-widget (<entry-combobox> <top>)

Slots

• has-frame is a boolean. It indicates whether a frame is drawn around the entry.

• value is the current selected value of in the combo box. If no value is selected, this slot is #f.

Method

• realize-widget see general documentation on realize-widget.

5.6. Menus

A GTKlos drop down menu is a special kind of button composed of menu items (of class <menu-

item>). The menu buttons are generally arranged in a menu bar (of class menu-bar>).

5.6.1. Class <menu-bar>

A <menu-bar> is a container whose children are menu items. It permits to implement a menu bar

with several sub-menus.


Building a menu bar and its components generally takes a lot of lines of code.

Using the add-items-to-menubar method can be used to simplify this task (see

below).

34

Inherited classes: <gtk-menu-shell>

<gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: chiild-pack-direction

pack-direction

Direct (non accessor) methods: add-items-to-menubar (<menu-bar> <top>)

realize-widget (<menu-bar> <top>)

Slots

• child-pack-direction is a symbol which describes how the children menu items composing

the menu in the bar are added. It’s value is one of the symbols 'left→right' (the default),

right→left, top→bottom or bottom→top.

• pack-direction is a symbol which describes how the menu items composing the menu in the

bar are added. It’s value is one of the symbols 'left→right' (the default), right→left,

top→bottom or bottom→top.

Methods

• add-items-to-menubar permit to create a menu bar and fill its components in a declarative

way. A description of this method is given in Section 5.6.7

• realize-widget see general documentation on realize-widget

In the following example, we create a menu bar with two menu items arranged vertically, thanks to

the pack-direction slot which is set to top→bottom

(let* ((win (make <vwindow> :title "Menus" :height 20))

 (mb (make <menu-bar> :parent win :pack-direction 'top->bottom)))

 (make <menu-item> :text "Menu 1" :parent mb)

 (make <menu-item> :text "Menu 2" :parent mb))

The menu bar:

5.6.2. Class <menu>

A <menu> implements a drop down menu consisting of a list of menu items. A <menu> is most

commonly dropped down by activating a menu item in a <menu-bar>

35

Inherited classes: <gtk-menu-shell>

<gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: active

reserve-toggle-size

Direct (non accessor) methods: container-add! (<menu-item> <menu> . <top>)

realize-widget (<menu> <top>)

Slots

• active contains the index of the currently selected menu item, or -1 if no menu item is

selected.

• reserve-toggle-size is a boolean that indicates whether the menu reserves space for toggles

and icons, (even if not present).

Methods

• container-add! see the description of this method in Section 5.6.3

• realize-widget see general documentation on realize-widget.

5.6.3. Class <menu-item>

A <menu-item> (or a derived class) is the only possible class of the components of a <menu>.

Inherited classes: <gtk-menu-item>

<gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes: <menu-check-item>

Direct slots: right-justified

text

use-underline

Direct (non accessor) methods: container-add! (<menu-item> <menu> . <top>)

realize-widget (<menu-item> <top>)

Slots

• right-justified is boolean which indicates whether the menu item appears justified at the

right side of a menu bar.

• text contains the text displayed in the menu item.

• use-underline indicates if an underline character the menu item’s text consists in a

36

accelerator key.

Methods

• container-add! permits to add a sub-menu (second parameter) to a menu item (first

parameter. Other arguments are ignored.

• realize-widget see general documentation on realize-widget.

5.6.4. Class <menu-check-item>

A <menu-check-item> is a menu item that maintains the state of a boolean value in addition to a

<menu-item> usual role in activating application code.

A check box is displayed at the left side of the menu item to indicate the boolean state. Activating

the menu item toggles the boolean value.

Inherited classes: <menu-item>

<gtk-menu-item>

<gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes: <menu-radio-item>

Direct slots: draw-as-radio

inconsistent

value

Direct (non accessor) methods: realize-widget (<menu-check-item> <top>)

Slots

• draw-as-radio is a boolean. It indicates if the check box is drawn as a `<menu-radio-item> .

• inconsistent is a boolean. It graphically indicates that the check button is in an inconsistent

state (check button is not empty and not checked). This can be useful if clicking this value is

not coherent with the current state of the application.

• value is a boolean. It indicates if the box is checked or not.

Methods

• realize-widget see general documentation on realize-widget.

5.6.5. Class <menu-radio-item>

A <menu-radio-item> is a check menu item that belongs to a group. At each instant exactly one of the

radio menu items from a group is selected.

37

Inherited classes: <menu-check-item>

<menu-item>

<gtk-menu-item>

<gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: sibling

Direct (non accessor) methods: initialize-instance (<menu-radio-item> <top>)

realize-widget (<menu-radio-item> <top>)

Slot

• sibling

Methods

• initialize-widget accepts a list of keyword arguments. You can use the #sibling argument to

set join the newly created radio button to an already created menu radio item.

• realize-widget see general documentation on realize-widget.

Example

(let* ((win (make <vwindow> :title "Menus" :width 300 :height 150))

 (mb (make <menu-bar> :parent win))

 (mi (make <menu-item> :text "A menu" :parent mb))

 ;; Add a menu to mi menu item

 (m (make <menu> :parent mi))

 ;; Add 3 menu-radio-items to m (in the same group (group leader is c1)

 (c1 (make <menu-radio-item> :text "Check 1" :parent m :value #t))

 (c2 (make <menu-radio-item> :text "Check 2" :parent m :sibling c1))

 (c3 (make <menu-radio-item> :text "Check 3" :parent m :sibling c1)))

 'done)

Here, we create a menu bar mb with only one menu item mi. This menu item contains a sub-menu m.

In m, we have added 3 radio buttons in the same group (they all belong to the group of c1). Note that

c1 is clicked since its value is #t.

5.6.6. Class <menu-separator-item>

The <menu-separator-item> is a separator used to group items within a menu. It displays a horizontal

line in the interface.

38

Inherited classes: <gtk-menu-item>

<gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots:

Direct (non accessor) methods: realize-widget (<menu-separator-item> <top>)

Method

• realize-widget see general documentation on realize-widget.

5.6.7. Method add-items-to-menubar

As you have probably seen in previous examples, building a menu bar an all its sub-menus is quite

complex, and easily error prone. The helper method add-items-to-menubar permits to have a mod

declarative approach. This method takes two parameters: a menu bar and a list specifying the

components to embed in this menu bar.

The specification list components are all Scheme lists specifying a child menu item of the menu bar.

By convention, an empty list indicates that the next menu items are placed on the right of the menu

bar.

A child menu item is described also by a list whose, first item is the text displayed in its sub menu.

As a first example, we can construct a simple interface:

(let* ((win (make <vwindow> :title "Menus" :width 300 :height 150))

 (mb (make <menu-bar> :parent win)))

 (add-items-to-menubar mb

 `(("File")

 ("Edit")

 ()

 ("Help"))))

It will produce the following window on screen:

We can now populate each menu item of this menu bar. by specifying their components in each

39

sub-list. For instance, to add several sub-menus in the previous "File" menu item, we can replace

("File") by the following list:

 ("File"

 ("Load")

 ("Save")

 ("") ;; <== We want a separator here

 ("Quit"))

For each menu item of this sub menu, we can specify which kind of menu item we have with the

:type key. This key accepts the following values: :item (the default), :check, :radio, :separator,

:cascade (for a cascading menu). Each kind of menu item accepts the :command key to specify the

callback that mus be run when the menu item is clicked. For radio buttons, the boolean key :first

can be used to specify that this menu item is the fist one of a new group of radio button.

For the previous example, we could have:

 ("File"

 ("Load" :command ,do-load) ; do-load is a callback function

 ("Save" :command ,do-save) ; do-save too

 ("" :type :separator)

 ("Quit" :command ,(lambda ignore (exit 0))))

For cascading menu, the sub menu mus be given with the :menu key. For instance, we could replace

the previous example with

("File"

 ("Load" :command ,do-load) ; do-load is a callback function

 ("Save" :command ,do-save) ; do-save too

 ("Export" :type :cascade

 :menu (("PDF" :command ,export-pdf) ; a callback

 ("PNG" :command ,export-png))) ; another one

 ("" :type :separator)

 ("Quit" :command ,(lambda ignore (exit 0))))

40

To conclude, hereafter is an example using all the possible menu items:

(define (action w e)

 (eprintf "You have clicked ~Sn" (text w)))

(let* ((win (make <vwindow> :title "Menus" :width 300 :height 150))

 (mb (make <menu-bar> :parent win)))

 (add-items-to-menubar

 mb

 `(("File"

 ("Load" :command ,action)

 ("Save" :command ,action)

 ("" :type :separator)

 ("Quit" :command ,(lambda _ (exit 0))))

 ("Edit"

 ("Copy" :command ,action)

 ("Cut" :command ,action)

 ("Paste" :command ,action))

 ("Cascade"

 (" 1 " :type :cascade

 :menu (("One" :command ,action)

 ("Un" :command ,action)

 ("Eins" :command ,action)))

 (" 2 " :type :cascade

 :menu (("Two" :command ,action)

 ("Deux" :command ,action)

 ("Zwei" :command ,action)))

 (" 3 " :command ,action)

 (" 4 " :command ,action))

 ("Check"

 ("option1" :type :check :command ,action)

 ("option2" :type :check :command ,action :value #t))

 ("Radio"

 ("radio1 group1" :type :radio :command ,action)

 ("radio2 group1" :type :radio :command ,action :value #t)

 ("" :type :separator)

 ("radio1 group2" :type :radio :command ,action :first #t)

 ("radio2 group2" :type :radio :command ,action))

 () ;; Add an empty list to make space

 ;; Now "Help" will be on the right part of the tool-bar

 ("Help"

 ("About" :command ,action)

 ("More Info" :command ,action)))))

41

Chapter 6. Entries and Text widgets

6.1. Class <entry>

An <entry> widget is a single line text entry widget.

Inherited classes: <gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: activates-default

caps-lock-warning

cursor-position

has-frame

max-length

placeholder-text

primary-icon-name

secondary-icon-name

text-editable

text-overwrite

text-visibility

value

Direct (non accessor) methods: realize-widget (<entry> <top>)

Slots

• activates-default is a boolean which tells if the entry will activate the default widget.

• caps-lock-warning is a boolean which tells if a password entry will show a warning when

Caps Lock is on.

• cursor-position indicates the position of the cursor in the entry.

• has-frame is a boolean which tells if the entry has a frame.

• max-length is the maximum length of the entry.

• placeholder-text is the string which is displayed in the entry when it is empty and

unfocused.

• primary-icon-name is the name of the icon to use for the primary icon for the entry. Icons

are searched by the GTK library in the standard directory (generally /usr/share/icons on

GNU/Linux).

• secondary-icon-name is the name of the icon to use for the secondary icon for the entry.

• text-editable is a boolean which indicates if the text entry is modifiable.

• text-overwrite is a boolean which tells if the text is overwritten when typing in the entry.

42

• text-visibility is a boolean which tells if the text in the entry is visible. Setting the visibility

to false is useful to read secrets.

• value is a string which contains the text in the entry.

Method

• realize-widget see general documentation on realize-widget

6.2. Class <text>

The <text> widget permits to create an editable text widget.

Inherited classes: <gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: accepts-tab

cursor-visible

justify

text-buffer

text-editable

text-indent

text-monospace

text-overwrite

text-wrap

value

Direct (non accessor) methods: event-connect (<text> <top> <top>)

event-connect-after (<text> <top> <top>)

realize-widget (<text> <top>)

text-copy-clipboard (<text>)

text-cut-clipboard (<text>)

text-paste-clipboard (<text>)

Slots

• accepts-tab indicates if the text widget insert a tab character when the Tab key is pressed.

• cursor-visible indicates if the cursor is displayed.

• justify is one of the following symbols: left, right, center or fill.

• text-buffer contains a C pointer to the representation of the internal GTK buffer (handle

with care).

• text-editable is a boolean which indicates if the text widget is modifiable.

• text-indent contains the value of the default indentation for paragraphs.

• text-monospace is a boolean which indicates that the text content should use monospace

43

fonts.

• text-overwrite is a boolean which tells if the text is overwritten when typing in the text

widget.

• text-wrap is a boolean. It indicates if text must be wrapped in the widget

• value contains the characters of the text widget

Methods

• event-connect permits to connect a signal to the text widget (see the Chapter 4)

• realize-widget see general documentation on realize-widget

• text-copy-clipboard copies the content of text clipboard

• text-cut-clipboard cuts the selected clipboard

• text-paste-clipboard pastes the clipboard in the text widget

44

Chapter 7. Dialog box widgets

A dialog box is a graphical interface component consisting of a window displayed by a program for:

• inform the user of an event, or

• obtain user information.

7.1. Class <dialog>

A <dialog> is a a window split vertically. The top section is the place where widgets such as a label

or an entry should be packed. The bottom area is generally used for packing buttons into the dialog

which may perform functions such as cancel, ok, or apply.

Inherited classes: <window>

<gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes: <font-dialog>

<file-dialog>

<color-dialog>

Direct slots:

Direct (non accessor) methods: container-add! (<dialog> <gtk-widget> . <top>)

dialog-run (<dialog>)

realize-widget (<dialog> <top>)

Methods

• container-add! permits to add a widget to the top area of the dialog window (above the

buttons).

• dialog-run is a function that must be run to wait the user response. When the user chooses a

button, the string associated to this button is returned as result. If the user clicks the close

button, the value returned is #f.

• realize-widget permits to specify at creation time the buttons used by the dialog with the

:buttons valued parameter. the default buttons are a "OK and " and "Cancel" buttons. The

specified value can be the name of a GTK stock item and an icon will be associated to the

text. For instance "gtk-ok" will add a button with text "Ok" and a check. So the default value

for the :buttons parameter is the list ("gtk-ok" "gtk-cancel"). See official GTK

documentation for the possible names for GTK stock items. Note that the usage of GTK

stock items is now deprecated. You can also see general documentation on realize-widget.

45

Exemple

(let ((d (make <dialog> :width 300 :title "Testing dialog")))

 ;; Add two labels to this dialog

 (container-add! d (make <label>

 :text "nI'm a dialog"))

 (container-add! d (make <label>

 :text "nAs you see, we can use bold in labelsn"))

 (let ((res (dialog-run d)))

 (if res

 (eprintf "You clicked the button ~sn" res)

 (eprintf "Dialog box was closed by the usern"))

 (destroy d)))

Executing the previous code will create the following window:

The make-simple-message-dialog procedure

The make-simple-message-dialog permits to easily build dialog window. It takes three mandatory

parameters.

1. the title of the dialog window

2. the type of the dialog. It is a symbol and can be error, info password, question, warning.

3. the message that must be displayed in above the buttons

The following parameters are also accepted:

• buttons is a list of buttons (by default, this list contain a OK and Cancel buttons).

• width the width of the dialog window (default 300)

• height the height of the dialog window (default 100)

This procedure also runs the dialog, and waits for the user response. The result is the name of the

clicked button (or `#f is destroyed). See below:

(make-simple-message-dialog "A test" 'question "Are you ready?"

 :buttons '("gtk-yes" "gtk-no"))

Executing the previous code will create the following window, and wait until the user responds.

46

When execution continues, the result will be "gtk-yes", "gtk-no" of #f

7.2. Class <color-dialog>

A <color-dialog> is a specialized dialog box for choosing a color.

Inherited classes: <dialog>

<window>

<gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: show-editor

value

Direct (non accessor) methods: dialog-run (<color-dialog>)

realize-widget (<color-dialog> <top>)

Slots

• show-editor indicates if the dialog will use a standard palette or if we want to see a color

editor (default is #f).

• value is a starting value used when the dialog is initialized.

Methods

• dialog-run run the color dialog (see documentation on dialog-run for dialogs). When it

terminates it will return the color as a string., or #f if cancelled

• realize-widget see see documentation on realize-widget for dialogs

Example

(dialog-run (make <color-dialog> :title "Choose color"

 :show-editor #f :value "#abcdef"))

47

If show-editor is set to #t we’ll have

7.3. Class <file-dialog>

A <color-dialog> is a specialized dialog box for choosing one or several files.

48

Inherited classes: <dialog>

<window>

<gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: dialog-type

select-multiple

show-hidden

value

Direct (non accessor) methods: dialog-run (<file-dialog>)

realize-widget (<file-dialog> <top>)

Slots

• dialog-type indicates the reason of file selection. It can be the symbols open, save, open-

folder, create-folder. The buttons displayed at the bottom of the dialog depends of the dialog

type. The default value for this slot is open.

• select-multiple indicates if multiple selection ar possible

• show-hidden indicates if hidden files are shown.

• value is the initial chosen file or directory.

Methods

• dialog-run permits to run the file dialog (see documentation on dialog-run for dialogs).

• realize-widget see see documentation on realize-widget for dialogs.

7.4. Class <font-dialog>

A <font-dialog> is a specialized dialog box for choosing a font.

49

Inherited classes: <dialog>

<window>

<gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: preview-text

show-preview-entry

value

Direct (non accessor) methods: dialog-run (<font-dialog>)

realize-widget (<font-dialog> <top>)

Slots

• preview-text is the text to show in the preview window (by default it is the classical "The

quick brown fox jumps over the lazy dog.")

• show-preview-entry indicates if the preview entry is displayed or not.

• value is the font used for the preview

Methods

• dialog-run permits to run the font dialog (see documentation on dialog-run for dialogs). The

value returned is the selected font as a string, or #f if cancelled.

• realize-widget see general documentation on realize-widget.

50

Chapter 8. Basic Classes

This section describes the basic classes which are inherited by the high level GTKlos widgets. These

classes are not exported by the GTKlos library. However, since the slots (an their accessor function)

are available in the library widgets, they are exposed here. Furthermore, all the methods described

here are also available in user programs, once the library has been imported.

8.1. Class <gtk-object>

The <gtk-object> class is the root of the hierarchy of all the GTK object.

Inherited classes:

Directly inheriting classes: <gtk-canvas-item>

<gtk-widget>

Direct slots:

Direct (non accessor) methods: event-connect (<gtk-object> <top> <top>)

event-connect-after (<gtk-object> <top> <top>)

Methods

• event-connect see Events.

• event-connect-after see Events.

8.2. Class <gtk-destroyed-object>

. The <gtk-destroyed-object> class is the class given to a <gtk-object> which has been destroyed

with the destroy method.

Inherited classes:

Directly inheriting classes:

Direct slots:

Direct (non accessor) methods:

51

8.3. Class <gtk-widget>

The <gtk-widget> is the base class all widgets in GTK derive from.

Inherited classes: <gtk-object>

Directly inheriting classes: <text>

<entry>

<scale>

<progress-bar>

<toolbar-item>

<gtk-container>

<gtk-orientable>

<gtk-misc>

Direct slots: can-default

can-focus

expand

focus-on-click

has-default

has-focus

height

height-request

name

parent

sensitive

show

tooltip

visible

wid

width

width-request

Direct (non accessor) methods: container-add! (<grid> <gtk-widget> . <top>)

container-add! (<gtk-container> <gtk-widget> . <top>)

container-add! (<dialog> <gtk-widget> . <top>)

container-add! (<gtk-box> <gtk-widget> . <top>)

container-info (<gtk-widget>)

container-remove! (<gtk-container> <gtk-widget>)

destroy (<gtk-widget>)

initialize-instance (<gtk-widget> <top>)

internal-arrange-widget (<gtk-widget> <top>)

realize-widget (<gtk-widget> <top>)

52

Slots

• can-default specifies whether widget can be a default widget.

• can-focus specifies whether widget can own the input focus. _ expand indicates if widget is

expanded or not (default to #f).

• focus-on-click indicates whether the widget should grab focus when it is clicked with the

mouse (this slot is only relevant for widgets that can take focus).

• has-default indicates if the widget is the default widget.

• has-focus indicates if the widget has the focus.

• height contains the actual widget height.

• height-request contains the requested widget height.

• name denotes the name of the widget. The name of the widget allows you to refer to it from

a CSS file. See GTK documentation for more information.

• parent denotes the parent of the container widget which contain this window. A list can be

used when setting the parent of a widget. In this case, the first element of the list must be the

container in which the widget must be added, the rest are the parameters that would be used

when using the container-add! method (see below).

• sensitive indicates the if the user can interact with it. If the widget is non sensitive, it is

grayed out.

• show is a read only slots. It indicates if the widget is shown when realized. The default value

of this slot is #t.

• tooltip is a string that can the text to be used as a tooltip for the created widget.

• visible is a boolean to set/unset the visibility of the widget.

• wid is a STklos slot. It contains the low level GTK widget which implements the high level

GTKlos object. Its value is generally set in the realize-widget method. Normal user program

shouldn’t change the value of this slot.

• width contains the actual widget width.

• with-request contains the requested widget width.

Methods

• container-add! see general documentation on container-add!

• container-info returns some information on the way the widget has been added to its

container as a list. If the widget has no parent, it returns #f.

• container-remove! see general documentation on container-add!

• destroy permits to destroy the widget. When a widget is destroyed, its class is changed to

<destroyed-gtk-object>.

• internal-arrange-widget is a hook called when the widget is initialized. Most of the time it

does nothing.

• realize-widget is the method called to create a low level GTK widget, and initialize it

properly. Each widget has it own realize-widget. For <gtk-widget>, it does nothing.

53

8.4. Class <gtk-container>

The <gtk-container> class is inherited by all the container widgets.

Inherited classes: <gtk-widget>

<gtk-object>

Directly inheriting classes: <canvas>

<gtk-menu-item>

<gtk-menu-shell>

<combobox>

<button>

<scroll>

<toolbar>

<header-bar>

<grid>

<frame>

<window>

Direct slots: border-width

children

Direct (non accessor) methods: container-add! (<gtk-container> <gtk-widget> . <top>)

container-remove! (<gtk-container> <gtk-widget>)

destroy (<gtk-container>)

The direct methods of this class are described in the section about <gtk-widget> class.

Methods

• container-add! is the method used to add a widget to a container. Its first argument is the

container widget and its second argument is the widget to add to the container. Subsequent

parameters depend of the container (each container has its own conventions to add a

component to it).

• container-remove! permit to remove the widget form it container. The widget is not

destroyed.

• destroy permits to destroy the widget (and all its children). When a widget is destroyed, its

class is changed to <destroyed-gtk-object>.

54

8.5. Class <gtk-misc>

This class factorizes properties which are common between the label and image widgets.

Inherited classes: <gtk-widget>

<gtk-object>

Directly inheriting classes: <label>

<image>

Direct slots: xalign

xpad

yalign

ypad

Direct (non accessor) methods:

Slots

• xalign is the horizontal alignment of the widget, from 0.0 (left) to 1.0 (right).

• xpad is the horizontal amount of padding for the widget.

• yalign is the vertical alignment of the widget , from 0.0 (top) to 1.0 (bottom).

• ypad is the vertical amount of padding for the widget.

8.6. Class <gtk-orientable>

The class <gtk-orientable> is inherited by classes which can be horizontally or vertically oriented.

Inherited classes: <gtk-widget>

<gtk-object>

Directly inheriting classes: <separator>

<progress-bar>

<toolbar>

<gtk-box>

Direct slots: orientation

Direct (non accessor) methods:

Method

• orientation indicates the orientation of the widget. It’s value is a symbol whose value can be

horitontal or vertical.

55

8.7. Class <gtk-menu-shell>

The class <gtk-menu-shell> is a base class. It is the ancestor of the classes <menu> and <menu-bar>.

Inherited classes: <gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes: <menu>

<menu-bar>

Direct slots:

Direct (non accessor) methods:

8.8. Class <gtk-menu-item>

The class <gtk-menu-item> is inherited by menu item classes which can hav an associated callback .

Inherited classes: <gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes: <menu-separator-item>

<menu-item>

Direct slots: command

Direct (non accessor) methods:

Method

• command contains the callback associated to the menu item (see Events).

56

Chapter 9. Canvases

GTKlos permits to access to the GTK canvas widget if the library GooCanvas is installed STklos is

configured. GooCanvas is a canvas widget for GTK+ that uses the Cairo 2D library for drawing. It has

a model/view split, and uses interfaces for canvas items and views.


This documentation is built from the original GooCanvas documentation available at

the following URL: https://lazka.github.io/pgi-docs/GooCanvas-2.0

9.1. Class <canvas>

Inherited classes: <gtk-container>

<gtk-widget>

<gtk-object>

Directly inheriting classes:

Direct slots: automatic-bounds

background-color

bounds-from-origin

bounds-padding

canvas-x1

canvas-x2

canvas-y1

canvas-y2

clear-background

integer-layout

resolution-x

resolution-y

scale

scale-x

scale-y

Direct (non accessor) methods: initialize-instance (<canvas> <top>)

realize-widget (<canvas> <top>)

Slots

• automatic-bounds indicates if the bounds are automatically calculated based on the bounds

of all the items in the canvas.

• background-color is a strings that contains the color to use for the canvas background.

• bounds-from-origin indicates if the automatic bounds are calculated from the origin.

• bounds-padding is a float. It indicates the padding added to the automatic bounds.

• canvas-x1 is the x coordinate of the left edge of the canvas bounds, in canvas units.

57

https://lazka.github.io/pgi-docs/GooCanvas-2.0

• canvas-x2 is the x coordinate of the right edge of the canvas bounds, in canvas units.

• canvas-y1 is the y coordinate of the top edge of the canvas bounds, in canvas units.

• canvas-y2 is the y coordinate of the bottom edge of the canvas bounds, in canvas units.

• clear-background indicates if the background is cleared before the canvas is painted.

• integer-layout indicates if all item layout is done to the nearest integer.

• resolution-x is the horizontal resolution of the display, in dots per inch

• resolution-y is the vertical resolution of the display, in dots per inch

• scale is the magnification factor of the canvas.

• scale-x is the horizontal magnification factor of the canvas.

• scale-y is the vertical magnification factor of the canvas.

Methods

• initialize-instance initializes the given canvas.

• realize-widget see general documentation on realize-widget.

9.2. Canvas Items

Canvas items (rectangles, ellipses, …) are the components that are displayed in a canvas widget. To

add a canvas item in a given canvas, you just need to set the parent of the canvas item to this

canvas.

9.2.1. Class <canvas-rectangle>

A <canvas-rectangle> represents a rectangle item. Since it is a subclass <gtk-canvas-item>, it inherits

all of the style properties such as x, y, fill-color or line-width.

Inherited classes: <gtk-canvas-item-simple>

<gtk-canvas-item>

<gtk-object>

Directly inheriting classes:

Direct slots: radius-x

radius-y

Direct (non accessor) methods: make-canvas-item (<canvas-rectangle> <top>)

Slots

• radius-x is the horizontal radius to use for rounded corners.

• radius-y is the vertical radius to use for rounded corners

58

Method

• make-canvas-item see documentation on make-canvas-item method

Example

(define w (make <vwindow> :title "Rectangle demo"))

(define c (make <canvas> :parent w :width 400 :height 300))

(define r1 (make <canvas-rectangle> :parent c

 :x 50 :y 50 :width 100 :height 80 :fill-color "red"))

(define r2 (make <canvas-rectangle> :parent c

 :x 120 :y 70 :width 140 :height 150

 :stroke-color "orange" :radius-x 20 :radius-y 20

 :line-width 5

 :fill-color "rgba(0,0,255,0.7)"))

Here, we define two rectangles, a red one r1 and a (partially transparent) blue one r2. We obtain:


Canvas items receive event signals as standard GTK widgets. For instance we can

define a behavior when entering in r1 or when cliking r2

(event-connect r1 "enter-notify-event" (lambda ignore (eprintf "Entering r1n")))

(event-connect r2 "button-release-event" (lambda ignore (eprintf "Clicked r2n")))

59

9.2.2. Class <canvas-ellipse>

A <canvas-ellipse> represents an ellipse item.

Inherited classes: <gtk-canvas-item-simple>

<gtk-canvas-item>

<gtk-object>

Directly inheriting classes:

Direct slots: center-x

center-y

radius-x

radius-y

Direct (non accessor) methods: make-canvas-item (<canvas-ellipse> <top>)

Slots

• center-x is the x coordinate of the center of the ellipse

• center-y is the y coordinate of the center of the ellipse

• radius-x is the horizontal radius of the ellipse

• radius-y is the vertical radius of the ellipse

Method

• make-canvas-item see documentation on make-canvas-item method.

(define w (make <vwindow> :title "Ellipse demo"))

(define c (make <canvas> :parent w :width 400 :height 300))

(define e1 (make <canvas-ellipse> :parent c

 :center-x 100 :center-y 80 :radius-x 80 :radius-y 30

 :fill-color "red"))

(define e2 (make <canvas-ellipse> :parent c

 :center-x 180 :center-y 150 :radius-x 100 :radius-y 100

 :line-width 5 :stroke-color "orange"

 :fill-color "rgba(0,0,255,0.7)"))

60

9.2.3. Class <canvas-line>

A <canvas-line> represents a line item. More exactly,it is a poly-line item which is a series of one or

more lines, with optional arrows at either end.

Inherited classes: <gtk-canvas-item-simple>

<gtk-canvas-item>

<gtk-object>

Directly inheriting classes:

Direct slots: arrow-length

arrow-tip-length

arrow-width

close-path

end-arrow

points

start-arrow

Direct (non accessor) methods: make-canvas-item (<canvas-line> <top>)

Slots

• arrow-length is a float which represents the length of the arrows, as a multiple of the line

width.

• arrow-tip-length is a float which represents the length of the arrow tip, as a multiple of the

line width.

• arrow-width is a float which represents the width of the arrows, as a multiple of the line

width.

61

• close-path indicates if the last point should be connected to the first.

• end-arrow indicates if an arrow should be displayed at the end of the poly-line

• points is the list of points of the poly-line.

• start-arrow indicates if an arrow should be displayed at the start of the poly-line.

Method

• make-canvas-item see documentation on make-canvas-item method.

Example

(define w (make <vwindow> :title "Line demo"))

(define c (make <canvas> :parent w :width 100 :height 200))

(define l1 (make <canvas-line> :parent c :points '(180 50 10 20 60 150)

 :stroke-color "red" :end-arrow #t

 :arrow-length 10 :arrow-tip-length 5 :arrow-width 15))

62

9.2.4. Class <canvas-text>

A <canvas-text> represents a text canvas item.

Inherited classes: <gtk-canvas-item-simple>

<gtk-canvas-item>

<gtk-object>

Directly inheriting classes:

Direct slots: alignment

anchor

ellipsize

use-markup

value

wrap

Direct (non accessor) methods: make-canvas-item (<canvas-text> <top>)

Slots

• alignment indicates how to align the text. Its value can be one of the symbols left, center or

right.

• anchor indicates how to position the text relative to the given x and y coordinates . Its value

can be one of the symbols center, north, north-west, north-east, south, south-west, south-east,

west or east.

• ellipsize indicates the preferred place to ellipsize the string, if the label does not have

enough room to display the entire string. It’s value can be one of the symbols none, start,

middle or end.

• use-markup indicates whether we use PangoMarkup in the text, to support different styles.

• value contains the text to display.

• wrap indicates the preferred method of wrapping the string if a width has been set. Its value

can be one of the symbols word, char or word-char. `

Method`

• make-canvas-item see documentation on make-canvas-item method.

9.2.5. Class <canvas-image>

A <canvas-image> permits to add an image as a canvas item in a canvas.

63

Inherited classes: <gtk-canvas-item-simple>

<gtk-canvas-item>

<gtk-object>

Directly inheriting classes:

Direct slots: alpha

image

pixbuf

scale-to-fit

Direct (non accessor) methods: make-canvas-item (<canvas-image> <top>)

Slots

• alpha is the opacity of the image (0.0 is fully transparent, and 1.0 is opaque).

• image contains the GTKlos image to display (see [class-image])

• pixbuf contains the pixbuf to display (see [class-image])

• scale-to-fit indicate if the image is scaled to fit the width and height settings.

Method

• make-canvas-item see documentation on make-canvas-item method.

9.2.6. Class <canvas-path>

A <canvas-path> represents a path item, which is a series of one or more lines, bezier curves, or

elliptical arcs, using SVG canvas path notation.

Inherited classes: <gtk-canvas-item-simple>

<gtk-canvas-item>

<gtk-object>

Directly inheriting classes:

Direct slots: value

Direct (non accessor) methods: make-canvas-item (<canvas-path> <top>)

Slot

• value is the sequence of path commands as a string.

Method

• make-canvas-item see documentation on make-canvas-item method.

64

Example

(define w (make <vwindow> :title "Path demo"))

(define c (make <canvas> :parent w :width 400 :height 200))

(define p1 (make <canvas-path> :parent c :stroke-color "blue"

 :value "M20,100 C20,50 100,50 100,100"))

(define p2 (make <canvas-path> :parent c :fill-color "yellow"

 :stroke-color "red" :line-width 5

 :value "M150 5 L75 200 L225 200 Z"))

65

9.3. Canvas Base Classes

There are two canvas base classes: <gtk-canvas-item> and <gtk-canvas-item-simple>. They are not

exported by the GTKlos library. However, since the slots (an their accessor function) are available in

the library widgets, they are exposed here. Furthermore, all the methods described here are also

available in user programs, once the library has been imported.

9.3.1. Class <gtk-canvas-item>

The <gtk-canvas-item> is the base class of all the items that can be added in a canvas object.

Inherited classes: <gtk-object>

Directly inheriting classes: <gtk-canvas-item-simple>

Direct slots: can-focus

description

parent

pointer-events

title

tooltip

visibility

visibility-threshold

wid

Direct (non accessor) methods: canvas-item-animate (<gtk-canvas-item> . <top>)

canvas-item-lower (<gtk-canvas-item> . <top>)

canvas-item-raise (<gtk-canvas-item> . <top>)

canvas-item-remove (<gtk-canvas-item>)

canvas-item-rotate (<gtk-canvas-item> <top> <top> <top>)

canvas-item-scale (<gtk-canvas-item> <top> <top>)

canvas-item-stop-animation (<gtk-canvas-item>)

canvas-item-translate (<gtk-canvas-item> <top> <top>)

initialize-instance (<gtk-canvas-item> <top>)

make-canvas-item (<gtk-canvas-item>)

Slots

• can-focus indicates if the item can take the keyboard focus.

• description contains a description of the item for use by assistive technologies.

• parent contains the parent of the canvas item

• pointer-events specifies when the item receives pointer events. This is a mask value which

can be built with the constants

◦ CANVAS_EVENTS_NONE the item doesn’t receive events at all.

◦ CANVAS_EVENTS_VISIBLE_MASK a mask indicating that the item only receives *events

66

when it is visible.

◦ CANVAS_EVENTS_PAINTED_MASK the item receives events in its painted areas,

whether it is visible or not.

◦ CANVAS_EVENTS_FILL_MASK a mask indicating that the filled part of the item receives

events.

◦ CANVAS_EVENTS_STROKE_MASK a mask indicating that the stroked part of the item

receives events.

• title contains a short context-rich description of the item for use by assistive technologies.

• tooltip contains the tooltip to display for the item.

• visibility indicates when the canvas item is visible. Its value can be one of the symbols

◦ hidden the item is invisible, and is not allocated any space

◦ invisible the item is invisible, but it is still allocated space

◦ visible the item is visible.

◦ visible-above-threshold the item is visible when the canvas scale setting is greater than

or equal to the item’s visibility threshold setting.

• visibility-threshold contains the scale threshold at which the item becomes visible

• wid is a STklos slot. It contains ta pointer to the GTK object used to implement the canvas

item . Its value is generally set in the make-canvas-item method. Normal user program

shouldn’t change the value of this slot.

Methods

• canvas-item-animate animates an item from its current position to the given offsets, scale

and rotation. This method takes several keyword arguments:

◦ x (default 0.0): the final x coordinate.

◦ y: (default 0.0): the final y coordinate.

◦ scale (default 1.0): the final scale.

◦ degrees (default: 360.0) the final rotation. This can be negative to rotate anticlockwise,

and can also be greater than 360 to rotate a number of times.

◦ absolute (default #t) indicates if the x, y, scale and degrees values are absolute, or

relative to the current transform.

◦ duration (default 1000): the duration of the animation, in milliseconds.

◦ step-time (default 1): the time between each animation step, in milliseconds.

◦ animation-type (default freeze) specifies what happens when the animation finishes.

This value may be one of the symbols

▪ freeze: the item remains in the final position,

▪ reset: the item is moved back to the initial position,

▪ restart: the animation is restarted from the initial position.

▪ bounce: the animation bounces back and forth between the start and end positions.

67

• canvas-item-lower lowers the given item in the stacking order.

• canvas-item-raise raises the given item in the stacking order.

• canvas-item-remove removes the item from its parent.

• canvas-item-rotate rotates the item’s coordinate system by the given amount, about the

given origin. This method takes four for parameters:

◦ the item to rotate

◦ degrees (a float) which is the clockwise angle rotation

◦ cx (a float) which is the x coordinate of the origin of the rotation.

◦ cy (a float) which is the y coordinate of the origin of the rotation.

• canvas-item-scale scales the item’s coordinate system by the given amounts. This method

takes three for parameters:

◦ the item to rotate

◦ sx (a float) is the amount to scale the horizontal axis.

◦ sy (a float) is the amount to scale the vertical axis.

• canvas-item-stop-animation stops any current animation for the given item, leaving it at its

current position.

• canvas-item-translate translates the origin of the item’s coordinate system by the given

amounts. This method takes three for parameters:

◦ the item to translate

◦ tx (a float) is the amount to move the origin in the horizontal direction

◦ ty (a float) is the amount to move the origin in the vertical direction

• initialize-instance verifies that a parent is given, and calls the make-canvas-item method.à

• make-canvas-item creates the GTK canvas item object. This method is redefined for each

GTKlos descendant of the class <gtk-canvas-item>.

68

9.3.2. Class <gtk-canvas-item-simple>

Inherited classes: <gtk-canvas-item>

<gtk-object>

Directly inheriting classes: <canvas-image>

<canvas-path>

<canvas-line>

<canvas-text>

<canvas-rectangle>

<canvas-ellipse>

Direct slots: antialias

clip-fill-rule

clip-path

fill-color

fill-rule

font

height

hint-metrics

line-cap

line-join

line-join-miter-limit

line-width

operator

stroke-color

width

x

y

Direct (non accessor) methods:

Slots

• antialias indicates the anti-aliasing mode to use. The value is one of the symbols default,

none, gray or subpixel.

• clip-fill-rule is the fill rule used to determine which parts of the item are clipped. It’s value is

either the symbol winding or even-odd (see the cairo.FillRule for more information).

• clip-path is a string representing the sequence of path commands specifying the clip path.

• fill-color is he color to use to paint the interior of the item

• fill-rule is the fill rule used to determine which parts of the item are filled (see the

cairo.FillRule for more information)

• font is the base font to use for the text

• height is the height of the object in pixels.

69

https://pycairo.readthedocs.io/en/latest/reference/enums.html#cairo.FillRule
https://pycairo.readthedocs.io/en/latest/reference/enums.html#cairo.FillRule

• hint-metrics is the hinting to be used for font metrics.its value is one of the symbols default,

on or off (see the cairo.HintMetrics for more information).

• line-cap is the the line cap style to use. Its value is one of the symbols butt, round or

square(see cairo.LineCap for more information.

• line-join is the line join style to use. Its value is one of the symbols mitter, round or bevel (see

cairo.LineJoin for more information.

• line-join-miter-limit is a float representing the smallest angle to use with miter joins, in

degrees. Bevel joins will be used below this limit

• line-width is a float representing the line width to use for the item’s perimeter.

• operator is the compositing operator to use. Its value is one of the symbols clear, source,

dest-atop, xor, add, saturate, over, in, out, atop, dest, dest-over, dest-in or dest-out` (see

caito.Operator for more information).

• stroke-color is the color to use for the item’s perimeter

• width is the width of the object in pixels.

• x is the x coordinate of the canvas item

• y is the y coordinate of the canvas item

70

https://pycairo.readthedocs.io/en/latest/reference/enums.html#cairo.HintMetrics
https://lazka.github.io/pgi-docs/GooCanvas-2.0/enums.html#GooCanvas.CairoLineCap
https://pycairo.readthedocs.io/en/latest/reference/enums.html#cairo.LineJoin
https://pycairo.readthedocs.io/en/latest/reference/enums.html#cairo.Operator

Chapter 10. Misc. functions

This part of the document describes the public functions which have not detailed before and are

exported by the (stklos gtklos) library.

==== timeout

The function timeout permits to add a callback which is called periodically. The callback is

integrated in the GTK event loop. It takes two parameters:

1. a delay (in millisecond) which is the period of the repetition

2. a thumb procedure which is the callback. If this procedure returns #f the callback is destroyed.

Otherwise, it will be called after the given delay.

This function returns an integer which is the event-loop ID of the callback. It can be used to destroy

a callback with the function kill-idle-callback (see below).

==== timeout-seconds

The function timeout permits to add a callback which is called periodically. The callback is

integrated in the GTK event loop. This function is preferred if you want to have a timer in the

“seconds” range and do not care about the exact time of the first call of the timer. It allows for more

optimizations and more efficient system power usage. It takes two parameters:

1. a delay (in second) which is the period of the repetition

2. a thumb procedure which is the callback. If this procedure returns #f the callback is destroyed.

Otherwise, it will be called after the given delay.

This function returns an integer which is the event-loop ID of the callback. It can be used to destroy

a callback with the function kill-idle-callback (see below).

==== when-idle

The function when-idle takes one parameter (a function without parameter) to be called whenever

there are no higher priority events pending to the default main loop. If this function returns #t it is

automatically removed from the list of event sources and will not be called again.

This function returns an integer which is the event-loop ID of the callback. It can be used to destroy

a callback with the function kill-idle-callback (see below).

==== kill-idle-callback

The kill-idle-callback takes one parameter: the callback ID to remove form the event loop (a

callback ID, is the value returned by a function such as timeout or when-idle).

==== gtk-main

The function gtk-main run the main event loop of GTK. This function should be called at the end of a

GUI program to take into account the signals and event of this program and, consequently, interact

with the user.

71

==== start-interactive-gtk

This function is useful when developing an application in the STklos REPL. This function tries to

connect the REPL to the GTK main event loop. Hence, when your keyboard is idle, GTK event are

processed.

72

Index

A

accepts-tab slot, 43

activates-default slot, 42

active slot, 35

add-items-to-menubar method, 34

add-items-to-toolbar method, 15

alignment slot, 63

alpha slot, 63

anchor slot, 63

antialias slot, 69

arrow-length slot, 61

arrow-tip-length slot, 61

arrow-width slot, 61

automatic-bounds slot, 57

B

background-color slot, 57

baseline-position slot, 8

border-width slot, 54

bounds-from-origin slot, 57

bounds-padding slot, 57

button

<button> class, 30

C

can-default slot, 52

can-focus slot, 52, 66

canvas

<canvas> class, 57

canvas-ellipse

<canvas-ellipse> class, 60

canvas-image

<canvas-image> class, 63

canvas-item-animate method, 66

canvas-item-lower method, 66

canvas-item-raise method, 66

canvas-item-remove method, 66

canvas-item-rotate method, 66

canvas-item-scale method, 66

canvas-item-stop-animation method, 66

canvas-item-translate method, 66

canvas-line

<canvas-line> class, 61

canvas-path

<canvas-path> class, 64

canvas-rectangle

<canvas-rectangle> class, 58

canvas-text

<canvas-text> class, 63

canvas-x1 slot, 57

canvas-x2 slot, 57

canvas-y1 slot, 57

canvas-y2 slot, 57

caps-lock-warning slot, 42

center-x slot, 60

center-y slot, 60

check-button

<check-button> class, 31

chiild-pack-direction slot, 34

children slot, 54

clear-background slot, 57

clip-fill-rule slot, 69

clip-path slot, 69

close-path slot, 61

color-dialog

<color-dialog> class, 47

column-homogeneous slot, 11

column-spacing slot, 11

combobox

<combobox> class, 33

command slot, 17, 22, 30, 33, 56

container-add! method, 8, 11, 15, 15, 16, 16, 33,

33, 35, 36, 45, 52, 52, 52, 52, 54

container-info method, 52

container-remove! method, 52, 54

cursor-position slot, 42

cursor-visible slot, 43

D

decoration-layout slot, 13

decoration-layout-set slot, 13

description slot, 66

destroy method, 51, 52, 54

dialog

<dialog> class, 45

dialog-run method, 45, 47, 49, 49

dialog-type slot, 49

digits slot, 22

draw-as-radio slot, 37

draw-value slot, 22

73

E

ellipsize slot, 63

end-arrow slot, 61

entry

<entry> class, 42

entry-combobox

<entry-combobox> class, 34

event-button, 26

event-char, 25

event-connect method, 27, 43, 51

event-connect-after method, 27, 43, 51

event-describe, 27

event-keycode, 25

event-keyval, 25

event-modifiers, 25

event-type, 24

event-x, 24

event-y, 25

expand slot, 8, 52

F

file-dialog

<file-dialog> class, 48

file-name slot, 20

fill slot, 8

fill-color slot, 69

fill-rule slot, 69

focus-on-click slot, 52

font slot, 69

font-dialog

<font-dialog> class, 49

frame

<frame> class, 10

G

get-gtk-event, 24

get-image-pixbuf method, 20

grid

<grid> class, 11

gtk-box

<gtk-box> class, 8

gtk-canvas-item

<gtk-canvas-item> class, 66

gtk-canvas-item-simple

<gtk-canvas-item-simple> class, 69

gtk-container

<gtk-container> class, 54

gtk-destroyed-object

<gtk-destroyed-object> class, 51

gtk-main function, 3, 71

gtk-menu-item

<gtk-menu-item> class, 56

gtk-menu-shell

<gtk-menu-shell> class, 56

gtk-misc

<gtk-misc> class, 55

gtk-object

<gtk-object> class, 51

gtk-orientable

<gtk-orientable> class, 55

gtk-widget

<gtk-widget> class, 52

H

has-default slot, 52

has-focus slot, 52

has-frame slot, 34, 42

has-origin slot, 22

has-subtitle slot, 13

hbox

<hbox> class, 9

header-bar

<header-bar> class, 13

height slot, 6, 52, 69

height-request slot, 52

hframe

<hframe> class, 10

hint-metrics slot, 69

homogeneous slot, 8

hpolicy slot, 18

hwindow

<hwindow> class, 8

I

icon-name slot, 17, 20

icon-size slot, 15, 20

image

<image> class, 20

image slot, 30, 63

image-path parameter object, 20

image-position slot, 30

inconsistent slot, 37

increment slot, 22

initialize-instance method, 9, 10, 32, 37, 52, 57, 66

integer-layout slot, 57

74

internal-arrange-widget method, 52

inverted slot, 21

items slot, 33

J

justify slot, 21, 43

K

kill-idle-callback function, 71

L

label

<label> class, 20

line-cap slot, 69

line-join slot, 69

line-join-miter-limit slot, 69

line-width slot, 69

lower slot, 22

M

make-canvas-item method, 58, 60, 61, 63, 63, 64,

66

max-content-height slot, 18

max-content-width slot, 18

max-length slot, 42

menu

<menu> class, 35

menu-bar

<menu-bar> class, 34

menu-check-item

<menu-check-item> class, 37

menu-item

<menu-item> class, 36

menu-radio-item

<menu-radio-item> class, 37

menu-separator-item

<menu-separator-item> class, 38

min-content-height slot, 18

min-content-width slot, 18

modal slot, 6

N

name slot, 52

O

operator slot, 69

orientation slot, 22, 55

overlay-scrolling slot, 18

P

pack-direction slot, 34

padding slot, 8

parent slot, 52, 66

pixbuf slot, 63

placeholder-text slot, 42

pointer-events slot, 66

points slot, 61

preview-text slot, 49

primary-icon-name slot, 42

progress-bar

<progress-bar> class, 21

progress-bar-pulse method, 21

pulse-step slot, 21

R

radio-button

<radio-button> class, 32

radio-group method, 32

radio-selected slot, 32

radius-x slot, 58, 60

radius-y slot, 58, 60

realize-widget method, 6, 8, 10, 11, 13, 15, 17, 17,

18, 20, 21, 21, 22, 23, 30, 31, 32, 33, 34, 34,

35, 36, 37, 37, 38, 42, 43, 45, 47, 49, 49, 52,

57

relief slot, 30

reserve-toggle-size slot, 35

resizable slot, 6

resolution-x slot, 57

resolution-y slot, 57

right-justified slot, 36

row-homogeneous slot, 11

row-spacing slot, 11

S

scale

<scale> class, 22

scale slot, 57

scale-to-fit slot, 63

scale-x slot, 57

scale-y slot, 57

scroll

<scroll> class, 18

secondary-icon-name slot, 42

select-multiple slot, 49

selectable slot, 21

75

sensitive slot, 52

separator

<separator> class, 23

shadow slot, 10

show slot, 52

show-arrow slot, 15

show-close-button slot, 13

show-editor slot, 47

show-hidden slot, 49

show-preview-entry slot, 49

show-text slot, 21

sibling slot, 32, 37

spacing slot, 8

start-arrow slot, 61

start-interactive-gtk function, 3, 72

STKLOS_IMAGE_PATH

STKLOS_IMAGE_PATH shellvariable, 20

stroke-color slot, 69

subtitle slot, 13

T

text

<text> class, 43

text slot, 17, 21, 21, 30, 36

text-buffer slot, 43

text-copy-clipboard method, 43

text-cut-clipboard method, 43

text-editable slot, 42, 43

text-indent slot, 43

text-monospace slot, 43

text-overwrite slot, 42, 43

text-paste-clipboard method, 43

text-visibility slot, 42

text-wrap slot, 43

timeout function, 71

timeout-seconds function, 71

title slot, 6, 10, 13, 66

toolbar

<toolbar> class, 15

toolbar-button-item

<toolbar-button-item> class, 17

toolbar-item

<toolbar-item> class, 16

toolbar-separator-item

<toolbar-separator-item> class, 17

toolbar-style slot, 15

tooltip slot, 52, 66

transient slot, 6

U

upper slot, 22

use-markup slot, 63

use-underline slot, 30, 36

V

value slot, 21, 22, 31, 33, 34, 37, 42, 43, 47, 49, 49,

63, 64

value-pos slot, 22

vbox

<vbox> class, 9

vframe

<vframe> class, 11

visibility slot, 66

visibility-threshold slot, 66

visible slot, 52

vpolicy slot, 18

vwindow

<vwindow> class, 7

W

when-idle function, 71

wid slot, 52, 66

width slot, 6, 52, 69

width-request slot, 52

window

<window> class, 6

window-placement slot, 18

wrap slot, 63

X

x slot, 69

xalign slot, 10, 30, 55

xpad slot, 55

Y

y slot, 69

yalign slot, 10, 30, 55

ypad slot, 55

76

	GTKlos extension: Building GUI with STklos
	Table of Contents
	Chapter 1. Introduction
	1.1. Installation
	1.2. Getting started

	Chapter 2. Container widgets
	2.1. Class <window>
	2.2. Class <vwindow>
	2.3. Class <hwindow>
	2.4. Class <gtk-box>
	2.5. Class <hbox>
	2.6. Class <vbox>
	2.7. Class <frame>
	2.8. Class <hframe>
	2.9. Class <vframe>
	2.10. Class <grid>
	2.11. Class <header-bar>
	2.12. Class <toolbar>
	2.13. Class <scroll>

	Chapter 3. Display widgets
	3.1. Class <image>
	3.2. Class <label>
	3.3. Class <progress-bar>
	3.4. Class <scale>
	3.5. Class <separator>

	Chapter 4. Signal and Events
	4.1. Event primitives
	4.2. Signal primitives

	Chapter 5. Button widgets
	5.1. Class <button>
	5.2. Class <check-button>
	5.3. Class <radio-button>
	5.4. Class <combobox>
	5.5. Class <entry-combobox>
	5.6. Menus

	Chapter 6. Entries and Text widgets
	6.1. Class <entry>
	6.2. Class <text>

	Chapter 7. Dialog box widgets
	7.1. Class <dialog>
	7.2. Class <color-dialog>
	7.3. Class <file-dialog>
	7.4. Class <font-dialog>

	Chapter 8. Basic Classes
	8.1. Class <gtk-object>
	8.2. Class <gtk-destroyed-object>
	8.3. Class <gtk-widget>
	8.4. Class <gtk-container>
	8.5. Class <gtk-misc>
	8.6. Class <gtk-orientable>
	8.7. Class <gtk-menu-shell>
	8.8. Class <gtk-menu-item>

	Chapter 9. Canvases
	9.1. Class <canvas>
	9.2. Canvas Items
	9.3. Canvas Base Classes

	Chapter 10. Misc. functions
	Index

