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Chapter 1. Introduction

1.1. Overview of STklos

STklos is the successor of STk [STk], a Scheme interpreter which was tightly connected to the Tk

graphical toolkit [Tk]. STk had an object layer which was called STklos. At this time, STk was used

to denote the base Scheme interpreter and STklos was used to denote its object layer, which was an

extension. For instance, when programming a GUI application, a user could access the widgets at

the (low) Tk level, or access them using a neat hierarchy of classes wrapped in STklos.

Since the object layer is now more closely integrated with the language, the new system has been

renamed STklos and STk is now used to designate the old system.

Compatibility with STk:

STklos has been completely rewritten and as a consequence, due to new implementation choices,

old STk programs are not fully compatible with the new system. However, these changes are very

minor and adapting a STk program for the STklos system is generally quite easy. The only

programs which need heavier work are programs which use Tk without objects, since the new

preferred GUI system is now based on GTK+ [GTK]. Programmers used to GUI programming using

STklos classes will find that both system, even if not identical in every points, share the same

philosophy.

1.2. Lexical Conventions

1.2.1. Identifiers

In STklos, by default, identifiers which start (or end) with a colon “:” are considered as keywords.

For instance :foo and bar: are STklos keywords, but not:key is not a keyword. Alternatively, to be

compatible with other Scheme implementations, the notation #:foo is also available to denote the

keyword of name foo. See Section 4.14 for more information.

The reader behavior, concerning keywords, can also be changed by the following directives:

• the #!keyword-colon-position-none tells the reader that colon in a symbol should not be

interpreted as a keyword;

• the #!keyword-colon-position-before tells the reader that a symbol starting with a colon should

be interpreted as a keyword;

• the #!keyword-colon-position-after tells the reader that a symbol ending with a colon should be

interpreted as a keyword;

• the #!keyword-colon-position-both tells the reader that a symbol starting or ending with a colon

should be interpreted as a keyword

In any case, the notation #:key is always read as a keyword.

By default, STklos is case sensitive as specified by R7RS. This behavior can be changed by

• the --case-insensitive option used for the commands stklos or stklos-compile



• the #!fold-case directive which can appear anywhere comments are permitted but must be

followed by a delimiter. This directive (and the #!no-fold-case) are treated as comments, except

that they affect the reading of subsequent data from the same port. The #!fold-case directive

causes subsequent identifiers and character names to be case-folded as if by string-foldcase. It

has no effect on character literals. The #!no-fold-case directive causes the reader to a non-

folding behavior.

1.2.2. Comments

There are four types of comments in STklos:

• a semicolon ; indicates the start of a comment. This kind of comment extends to the end of the

line (as described in R
5
RS).

• multi-lines comment use the classical Lisp convention: a comment begins with #| and ends with

|#. This form of comment is now defined by SRFI-30 (Nested Multi-line Comments).

• a sharp sign followed by a semicolon #; comments the next Scheme expression. This is useful to

comment a piece of code which spans multiple lines

• comments can also be introduced by #!. Such a comment extends to the end of the line which

introduces it. This extension is particularly useful for building STklos scripts. On most Unix

implementations, if the first line of a script looks like this:

#!/usr/bin/env  stklos

then the script can be started directly as if it was a binary program. STklos is loaded behind the

scene and executes the script as a Scheme program. This form is compatible with the notation

introduced in SRFI-22 (Running Scheme Scripts on Unix).

Note that, as a special case, that the sequences #!key, #!optional and #!rest are respectively

converted to the STklos keywords #:key, #:optional and #:rest. This permits to Scheme lambdas,

which accepts keywords and optional arguments, to be compatible with DSSSL lambdas [DSSSL].

1.2.3. Here Strings

Here strings permit to easily enter multilines strings in programs. The sequence of characters #<<

starts a here string. The characters following this sequence #<< until a newline character define a

terminator for the here string. The content of the string includes all characters between the #<< line

and a line whose only content is the specified terminator. No escape sequences are recognized

between the starting and terminating lines.

Example: the sequence

#<<EOF

abc

def

  ghi

EOF

http://srfi.schemers.org/srfi-30/srfi-30.html
http://srfi.schemers.org/srfi-22/srfi-22.html


is equivalent to the string

"abcndefn  ghi"

1.2.4. Other Notations

STk accepts all the notations defined in R
5
RS plus

• #true and #false are other names for the constants #t and #f as proposed by R
7
RS.

• [] Brackets are equivalent to parentheses. They are used for grouping and to build lists. A list

opened with a left square bracket must be closed with a right square bracket (see Section 4.4).

• : a colon at the beginning or the end of a symbol introduces a keyword. Keywords are described

in section Keywords (see Section 4.14).

• #n= is used to represent circular structures. The value given of n must be a number. It is used as

a label, which can be referenced later by a #n# notation (see below). The scope of the label is the

expression being read by the outermost read.

• #n# is used to reference some object previously labeled by a #n= notation; that is, #n# represents

a pointer to the object labeled exactly by #n=. For instance, the object returned by the following

expression

(let* ((a (list 1 2))

       (b (cons 'x a)))

  (list a b))

can also be represented in this way:

(#0=(1 2) (x . #0#))



Chapter 2. Expressions

This chapter describes the main forms available in STklos. R
5
RS constructions are given very

succinctly here for reference. See [R5RS] for a complete description.

2.1. Literal expressions

R
5
RS syntax

(quote <datum>) 

'<datum> 

The quoting mechanism is identical to R
5
RS, except that keywords constants evaluate "to

themselves" as numerical constants, string constants, character constants, and boolean constants

'"abc"     =>  "abc"

"abc"      =>  "abc"

'145932    =>  145932

145932     =>  145932

'#t        =>  #t

#t         =>  #t

:foo       =>  :foo

':foo      =>  :foo


R

5
RS requires to quote constant lists and constant vectors. This is not necessary

with STklos.

2.2. Procedures

STklos syntax

(lambda <formals> <body>) 

A lambda expression evaluates to a procedure. STklos lambda expression have been extended to

allow a optional and keyword parameters. <formals> should have one of the following forms:

(<variable1> …)

The procedure takes a fixed number of arguments; when the procedure is called, the arguments

will be stored in the bindings of the corresponding variables. This form is identical to R
5
RS.



<variable>

The procedure takes any number of arguments; when the procedure is called, the sequence of

actual arguments is converted into a newly allocated list, and the list is stored in the binding of

the <variable>. This form is identical to R
5
RS.

(<variable1> … <variablen> . <variablen+1>)

If a space-delimited period precedes the last variable, then the procedure takes n or more

arguments, where n is the number of formal arguments before the period (there must be at least

one). The value stored in the binding of the last variable will be a newly allocated list of the

actual arguments left over after all the other actual arguments have been matched up against

the other formal arguments. This form is identical to R
5
RS.

(<variable1 … <variablen> [:optional …] [:rest …] [:key …])

This form is specific to STklos and allows to have procedure with optional and keyword

parameters. The form :optional allows to specify optional parameters. All the parameters

specified after :optional to the end of <formals> (or until a :rest or :key) are optional

parameters. An optional parameter can declared as:

• variable: if a value is passed when the procedure is called, it will be stored in the binding of

the corresponding variable, otherwise the value #f will be stored in it.

• (variable value): if a value is passed when the procedure is called, it will be stored in the

binding of the corresponding variable, otherwise value will be stored in it.

• (variable value test?): if a value is passed when the procedure is called, it will be stored in

the binding of the corresponding variable, otherwise value will be stored in it. Furthermore,

test? will be given the value #t if a value is passed for the given variable, otherwise test? is

set to #f.

Hereafter are some examples using :optional parameters

((lambda (a b :optional c d) (list a b c d)) 1 2)

                            => (1 2 #f #f)

((lambda (a b :optional c d) (list a b c d)) 1 2 3)

                            => (1 2 3 #f)

((lambda (a b :optional c (d 100)) (list a b c d)) 1 2 3)

                            => (1 2 3 100)

((lambda (a b :optional c (d #f d?)) (list a b c d d?)) 1 2 3)

                            => (1 2 3 #f #f)

The form :rest parameter is similar to the dot notation seen before. It is used before an identifier to

collects the parameters in a single binding:

((lambda (a :rest b) (list a b)) 1)

                            => (1 ())

((lambda (a :rest b) (list a b)) 1 2)

                            => (1 (2))

((lambda (a :rest b) (list a b)) 1 2 3)



                            => (1 (2 3))

The form :key allows to use keyword parameter passing. All the parameters specified after :key to

the end of <formals> are keyword parameters. A keyword parameter can be declared using the

three forms given for optional parameters. Here are some examples illustrating how to declare and

how to use keyword parameters:

((lambda (a :key b c) (list a b c)) 1 :c 2 :b 3)

                            => (1 3 2)

((lambda (a :key b c) (list a b c)) 1 :c 2)

                            => (1 #f 2)

((lambda (a :key (b 100 b?) c) (list a b c b?)) 1 :c 2)

                            => (1 100 2 #f)

At last, here is an example showing :optional :rest and :key parameters

(define f (lambda (a :optional b :rest c :key d e)

             (list a b c d e)))

(f 1)                       => (1 #f () #f #f)

(f 1 2)                     => (1 2 () #f #f)

(f 1 2 :d 3 :e 4)           => (1 2 (:d 3 :e 4) 3 4)

(f 1 :d 3 :e 4)             => (1 #f (:d 3 :e 4) 3 4)

STklos procedure

(closure? obj) 

Returns #t if obj is a procedure created with the lambda syntax and #f otherwise.

Note that primitive procedures (those which are written in C) are not closures:

(define (cube x) (* x x x))

(closure? cube)               => #t

(define square-root sqrt)

(eq? square-root sqrt)        => #t

(closure? square-root)        => #f

(closure? 10)                 => #f

(closure? display)            => #f

(closure? (lambda (x) (- x))) => #t

(closure? any)                => #t



STklos syntax

(case-lambda <clause> …) 

Each <clause> should have the form (<formals> <body>), where <formals> is a formal arguments list

as for lambda. Each <body> is a <tail-body>, as defined in R
5
RS.

A case-lambda expression evaluates to a procedure that accepts a variable number of arguments

and is lexically scoped in the same manner as procedures resulting from lambda expressions. When

the procedure is called with some arguments v1 … vk, then the first <clause> for which the

arguments agree with <formals> is selected, where agreement is specified as for the <formals> of a

lambda expression. The variables of <formals> are bound to fresh locations, the values v1 … vk are

stored in those locations, the <body> is evaluated in the extended environment, and the results of

<body> are returned as the results of the procedure call.

It is an error for the arguments not to agree with the <formals> of any <clause>.

This form is defined in SRFI-16 (Syntax for procedures of variable arity).

 (define plus

   (case-lambda

    (() 0)

    ((x) x)

    ((x y) (+ x y))

    ((x y z) (+ (+ x y) z))

    (args (apply + args))))

 (plus)                     => 0

 (plus 1)                   => 1

 (plus 1 2 3)               => 6

 ((case-lambda

   ((a) a)

   ((a b) (* a b)))

  1 2 3)                    => error

2.3. Assignments

R
5
RS syntax

(set! <variable> <expression>) 

(set! (<proc> <arg> …) <expression>) 

http://srfi.schemers.org/srfi-16/srfi-16.html


The first form of set! is the R
5
RS one:

<Expression> is evaluated, and the resulting value is stored in the location to which <variable> is

bound. <Variable> must be bound either in some region enclosing the set! expression or at top

level.

(define x 2)

(+ x 1)                   =>  3

(set! x 4)                =>  unspecified

(+ x 1)                   =>  5

The second form of set! is defined in SRFI-17 (Generalized set!):

This special form set! is extended so the first operand can be a procedure application, and not just

a variable. The procedure is typically one that extracts a component from some data structure.

Informally, when the procedure is called in the first operand of set!, it causes the corresponding

component to be replaced by the second operand. For example,

(set! (vector-ref x i) v)

would be equivalent to:

(vector-set! x i v)

Each procedure that may be used as the first operand to set! must have a corresponding setter

procedure. The procedure setter (see below) takes a procedure and returns the corresponding

setter procedure. So,

(set! (proc arg ...) value)

is equivalent to the call

((setter proc) arg ... value)

The result of the set! expression is unspecified.

STklos procedure

(setter proc) 

Returns the setter associated to a proc. Setters are defined in the SRFI-17 (Generalized set!)

document. A setter proc, can be used in a generalized assignment, as described in set!.

http://srfi.schemers.org/srfi-17/srfi-17.html
http://srfi.schemers.org/srfi-17/srfi-17.html


To associate s to the procedure p, use the following form:

(set! (setter p) s)

For instance, we can write

(set! (setter car) set-car!)

The following standard procedures have pre-defined setters:

(set! (car x) v)              == (set-car! x v)

(set! (cdr x) v)              == (set-cdr! x v)

(set! (string-ref x i) v)     == (string-set! x i v)

(set! (vector-ref x i) v)     == (vector-set! x i v)!

(set! (slot-ref x 'name) v)   == (slot-set! x 'name v)

(set! (struct-ref x 'name) v) == (struct-set! x 'name v)

(set! (list-ref x i) v)       == (list-set! x i v)

Furhermore, Parameter Objects (see Section 4.21) are their own setter:

(real-precision)              => 15

(set! (real-precision) 12)

(real-precision)              => 12

2.4. Conditionals

R
5
RS syntax

(if <test> <consequent> <alternate>) 

(if <test> <consequent>) 

An if expression is evaluated as follows: first, <test> is evaluated. If it yields a true value, then

<consequent> is evaluated and its value(s) is(are) returned. Otherwise <alternate> is evaluated and

its value(s) is(are) returned. If <test> yields a false value and no <alternate> is specified, then the

result of the expression is void.

  (if (> 3 2) 'yes 'no)           =>  yes

  (if (> 2 3) 'yes 'no)           =>  no

  (if (> 3 2)

      (- 3 2)

      (+ 3 2))                    =>  1



R
5
RS syntax

(cond <clause1> <clause2> …) 

In a cond, each <clause> should be of the form

(<test> <expression1> ...)

where <test> is any expression. Alternatively, a <clause> may be of the form

(<test> => <expression>)

The last <clause> may be an "else clause," which has the form

(else <expression1> <expression2> ...)

A cond expression is evaluated by evaluating the <test> expressions of successive <clause>s in

order until one of them evaluates to a true value When a <test> evaluates to a true value, then the

remaining <expression>s in its <clause> are evaluated in order, and the result(s) of the last

<expression> in the <clause> is(are) returned as the result(s) of the entire cond expression. If the

selected <clause> contains only the <test> and no <expression>`s, then the value of the `<test> is

returned as the result. If the selected <clause> uses the ⇒ alternate form, then the <expression> is

evaluated. Its value must be a procedure that accepts one argument; this procedure is then called

on the value of the <test> and the value(s) returned by this procedure is(are) returned by the cond

expression.

If all <test>s evaluate to false values, and there is no else clause, then the result of the conditional

expression is void; if there is an else clause, then its <expression>s are evaluated, and the value(s) of

the last one is(are) returned.

  (cond ((> 3 2) 'greater)

        ((< 3 2) 'less))                    =>  greater

  (cond ((> 3 3) 'greater)

        ((< 3 3) 'less)

        (else 'equal))                      =>  equal

  (cond ((assv 'b '((a 1) (b 2))) => cadr)

        (else #f))                          =>  2

R
7
RS syntax



(case <key> <clause1> <clause2> …) 

In a case, each <clause> should have the form

((<datum1> ...) <expression1> <expression2> ...),

where each <datum> is an external representation of some object. All the <datum>`s must be

distinct. The last `<clause> may be an "else clause," which has the form

    (else <expression1> <expression2> ...).

A case expression is evaluated as follows. <Key> is evaluated and its result is compared against each

<datum>. If the result of evaluating <key> is equivalent (in the sense of eqv?) to a <datum>, then the

expressions in the corresponding <clause> are evaluated from left to right and the result(s) of the

last expression in the <clause> is(are) returned as the result(s) of the case expression. If the result of

evaluating <key> is different from every <datum>, then if there is an else clause its expressions are

evaluated and the result(s) of the last is(are) the result(s) of the case expression; otherwise the

result of the case expression is void.

If the selected <clause> or else clause uses the ⇒ alternate form, then the expression is evaluated. It

is an error if its value is not a procedure accepting one argument. This procedure is then called on

the value of the hkeyi and the values returned by this procedure are returned by the case

expression.

  (case (* 2 3)

    ((2 3 5 7) 'prime)

    ((1 4 6 8 9) 'composite))     =>  composite

  (case (car '(c d))

    ((a) 'a)

    ((b) 'b))                     =>  void

  (case (car '(c d))

    ((a e i o u) 'vowel)

    ((w y) 'semivowel)

    (else 'consonant))            =>  consonant

  (case (car '(c d))

    ((a e i o u) 'vowel)

    ((w y) 'semivowel)

    (else  => (lambda (x) (x))))  =>  c

R
5
RS syntax

(and <test1> …) 



The <testi> expressions are evaluated from left to right, and the value of the first expression that

evaluates to a false value is returned. Any remaining expressions are not evaluated. If all the

expressions evaluate to true values, the value of the last expression is returned. If there are no

expressions then #t is returned.

  (and (= 2 2) (> 2 1))           =>  #t

  (and (= 2 2) (< 2 1))           =>  #f

  (and 1 2 'c '(f g))             =>  (f g)

  (and)                           =>  #t

R
5
RS syntax

(or <test1> …) 

The <testi> expressions are evaluated from left to right, and the value of the first expression that

evaluates to a true value is returned. Any remaining expressions are not evaluated. If all

expressions evaluate to false values, the value of the last expression is returned. If there are no

expressions then #f is returned.

  (or (= 2 2) (> 2 1))            =>  #t

  (or (= 2 2) (< 2 1))            =>  #t

  (or #f #f #f)                   =>  #f

  (or (memq 'b '(a b c))

      (/ 3 0))                    =>  (b c)

STklos syntax

(when <test> <expression1> <expression2> …) 

If the <test> expression yields a true value, the <expression>s are evaluated from left to right and

the value of the last <expression> is returned. Otherwise, when returns void.

STklos syntax

(unless <test> <expression1> <expression2> …) 

If the <test> expression yields a false value, the <expression>s are evaluated from left to right and

the value of the last <expression> is returned. Otherwise, unless returns void.



2.5. Binding Constructs

The three binding constructs let, let*, and letrec are available in STklos. These constructs differ in

the regions they establish for their variable bindings. In a let expression, the initial values are

computed before any of the variables become bound; in a let* expression, the bindings and

evaluations are performed sequentially; while in a letrec expression, all the bindings are in effect

while their initial values are being computed, thus allowing mutually recursive definitions.

STklos also provides a fluid-let form which is described below.

R
5
RS syntax

(let <bindings> <body>) 

(let <variable> <bindings> <body>) 

In a let, <bindings> should have the form

((<variable1> <init1>) ...)

where each <initi> is an expression, and <body> should be a sequence of one or more expressions. It

is an error for a <variable> to appear more than once in the list of variables being bound.

The <init>s are evaluated in the current environment (in some unspecified order), the <variable>s

are bound to fresh locations holding the results, the <body> is evaluated in the extended

environment, and the value(s) of the last expression of <body> is(are) returned. Each binding of a

<variable> has <body> as its region.

(let ((x 2) (y 3))

  (* x y))                      =>  6

(let ((x 2) (y 3))

  (let ((x 7)

        (z (+ x y)))

    (* z x)))                   =>  35

The second form of let, which is generally called a named let, is a variant on the syntax of let

which provides a more general looping construct than do and may also be used to express

recursions. It has the same syntax and semantics as ordinary let except that <variable> is bound

within <body> to a procedure whose formal arguments are the bound variables and whose body is

<body>. Thus the execution of <body> may be repeated by invoking the procedure named by

<variable>.

(let loop ((numbers '(3 -2 1 6 -5))

           (nonneg  '())



           (neg     '()))

  (cond ((null? numbers) (list nonneg neg))

        ((>= (car numbers) 0)

           (loop (cdr numbers)

                 (cons (car numbers) nonneg)

                 neg))

        ((< (car numbers) 0)

           (loop (cdr numbers)

                  nonneg

                  (cons (car numbers) neg)))))

   =>  ((6 1 3) (-5 -2))

R
5
RS syntax

(let* <bindings> <body>) 

In a let*, <bindings> should have the same form as in a let (however, a <variable> can appear more

than once in the list of variables being bound).

Let* is similar to let, but the bindings are performed sequentially from left to right, and the region

of a binding indicated by

(<variable> <init>)

is that part of the let* expression to the right of the binding. Thus the second binding is done in an

environment in which the first binding is visible, and so on.

(let ((x 2) (y 3))

  (let* ((x 7)

         (z (+ x y)))

    (* z x)))             =>  70

R
5
RS syntax

(letrec <bindings> <body>) 

<bindings> should have the form as in let.

The <variable>s are bound to fresh locations holding undefined values, the <init>s are evaluated in

the resulting environment (in some unspecified order), each <variable> is assigned to the result of

the corresponding <init>, the <body> is evaluated in the resulting environment, and the value(s) of

the last expression in <body> is(are) returned. Each binding of a <variable> has the entire letrec



expression as its region, making it possible to define mutually recursive procedures.

(letrec ((even? (lambda (n)

                  (if (zero? n)

                      #t

                      (odd? (- n 1)))))

         (odd?  (lambda (n)

                  (if (zero? n)

                      #f

                      (even? (- n 1))))))

  (even? 88))

                  =>  #t

R
7
RS syntax

(letrec* <bindings> <body>) 

<bindings> should have the form as in let and body is a sequence of zero or more definitions

followed by one or more expressions.

The <variable>s are bound to fresh locations, each variable is assigned in left-to-right order to the

result of evaluating the corresponding init, the body is evaluated in the resulting environment, and

the values of the last expression in body are returned. Despite the left-to-right evaluation and

assignment order, each binding of a variable has the entire letrec* expression as its region, making

it possible to define mutually recursive procedures. If it is not possible to evaluate each init

without assigning or referring to the value of the corresponding variable or the variable of any of

the bindings that follow it in bindings, it is an error.

(letrec* ((p (lambda (x)

               (+ 1 (q (- x 1)))))

          (q(lambda (y)

              (if (zero? y)

                  0

                  (+ 1 (p (- y 1))))))

          (x (p 5))

          (y x))

  y)  => 5

R
7
RS syntax

(let-values ((<formals> <expression>) …) <body>) 



Each <formals> should be a formal arguments list as for a lambda expression.

The <expression>s are evaluated in the current environment, the variables of the <formals> are

bound to fresh locations, the return values of the <expression>s are stored in the variables, the

<body> is evaluated in the extended environment, and the values of the last expression of <body> are

returned.

The matching of each <formals> to values is as for the matching of <formals> to arguments in a

lambda expression, and it is an error for an <expression> to return a number of values that does not

match its corresponding <formals>.

(let-values (((root rem) (exact-integer-sqrt 32)))

   (* root rem))            =>  35

(let ((a 'a) (b 'b) (x 'x) (y 'y))

   (let-values (((a b) (values x y))

                ((x y) (values a b)))

     (list a b x y)))      => (x y a b)

R
7
RS syntax

(let-values ((<formals> <expression>) …) <body>) 

Each <formals> should be a formal arguments list as for a lambda expression.

let*-values is similar to let-values, but the bindings are performed sequentially from left to right,

and the region of a binding indicated by (<formals> <expression>) is that part of the let*-values

expression to the right of the binding. Thus the second binding is done in an environment in which

the first binding is visible, and so on.

(let ((a 'a) (b 'b) (x 'x) (y 'y))

   (let*-values (((a b) (values x y))

                ((x y) (values a b)))

     (list a b x y)))      => (x y x y)

R
7
RS procedure

(define-values formals expression) 

The form define-values creates multiple definitions from a single expression returning multiple

values. Here, expression is evaluated, and the formals are bound to the return values in the same

way that the formals in a lambda expression are matched to the arguments in a procedure call.



(let ()

  (define-values (x y) (exact-integer-sqrt 17))

  (list x y))                   => (4 1)

(let ()

   (define-values (x y) (values 1 2))

   (+ x y))                     => 3

(let ()

   (define-values (x . y) (values 1 2 3))

   (list x y)                  => (1 (2 3))

STklos syntax

(fluid-let <bindings> <body>) 

The <bindings> are evaluated in the current environment, in some unspecified order, the current

values of the variables present in <bindings> are saved, and the new evaluated values are assigned

to the <bindings> variables. Once this is done, the expressions of <body> are evaluated sequentially

in the current environment; the value of the last expression is the result of fluid-let. Upon exit, the

stored variables values are restored. An error is signalled if any of the <bindings> variable is

unbound.

(let* ((a 'out)

       (f (lambda () a)))

  (list (f)

        (fluid-let ((a 'in)) (f))

        (f))) => (out in out)

When the body of a fluid-let is exited by invoking a continuation, the new variable values are

saved, and the variables are set to their old values. Then, if the body is reentered by invoking a

continuation, the old values are saved and new values are restored. The following example

illustrates this behavior

(let ((cont #f)

      (l    '())

      (a    'out))

  (set! l (cons a l))

  (fluid-let ((a 'in))

    (set! cont (call-with-current-continuation (lambda (k) k)))

    (set! l (cons a l)))

  (set! l (cons a l))

  (if cont (cont #f) l)) =>  (out in out in out)



2.6. Sequencing

R
5
RS syntax

(begin <expression1> <expression2> …) 

The <expression>s are evaluated sequentially from left to right, and the value(s) of the last

<expression> is(are) returned. This expression type is used to sequence side effects such as input

and output.

  (define x 0)

  (begin (set! x 5)

         (+ x 1))                  =>  6

  (begin (display "4 plus 1 equals ")

         (display (+ 4 1)))        |- 4 plus 1 equals 5

                                   =>  void

STklos syntax

(tagbody <expression1> <expression2> …) 

(→ tag) 

The <expression>s are evaluated sequentially from left to right, and the value(s) of the last

<expression> is(are) returned as in a begin form. Within a tagbody form expressions which are

keywords are considered as tags and the special form (→ tag) is used to transfer execution to the

given tag. This is a very low level form which is inspired on tabgody Common Lisp’s form. It can be

useful for defining new syntaxes, and should probably not be used as is.

(tagbody               ;; an infinite loop

   #:1 (display ".")

       (-> #:1))

(let ((v 0))

  (tagbody

   #:top (when (< v 5)

           (display v)

           (set! v (fx+ v 1))

           (-> #:top))))                      |- 01234

(tagbody (display 1)

         (tagbody (display 2)



                  (-> #:inner)

                  (display "not printed")

           #:inner

                 (display 3)

                 (-> #:outer)

                 (display "not printed too"))

   #:outer

         (display "4"))                        |- 1234

2.7. Iterations

R
5
RS syntax

(do [[<var1> <init1> <step1>] …] [<test> <expr> …] <command> …) 

Do is an iteration construct. It specifies a set of variables to be bound, how they are to be initialized

at the start, and how they are to be updated on each iteration. When a termination condition is met,

the loop exits after evaluating the <expr>s.

Do expressions are evaluated as follows: The <init> expressions are evaluated (in some unspecified

order), the <var>s are bound to fresh locations, the results of the <init> expressions are stored in

the bindings of the <var>s, and then the iteration phase begins.

Each iteration begins by evaluating <test>; if the result is false then the <command> expressions are

evaluated in order for effect, the <step> expressions are evaluated in some unspecified order, the

<var>s are bound to fresh locations, the results of the <step>s are stored in the bindings of the

<var>s, and the next iteration begins.

If <test> evaluates to a true value, then the <expr>s are evaluated from left to right and the value(s)

of the last <expr> is(are) returned. If no <expr>s are present, then the value of the do expression is

void.

The region of the binding of a <var> consists of the entire do expression except for the <init>s. It is

an error for a <var> to appear more than once in the list of do variables.

A <step> may be omitted, in which case the effect is the same as if

(<var> <init> <var>)

had been written.

  (do ((vec (make-vector 5))

       (i 0 (+ i 1)))

      ((= i 5) vec)

    (vector-set! vec i i))            =>  #(0 1 2 3 4)



  (let ((x '(1 3 5 7 9)))

    (do ((x x (cdr x))

         (sum 0 (+ sum (car x))))

        ((null? x) sum)))             =>  25

STklos syntax

(dotimes [var count] <expression1> <expression2> …) 

(dotimes [var count result] <expression1> <expression2> …) 

Evaluates the count expression, which must return an integer and then evaluates the <expression>s

once for each integer from zero (inclusive) to count (exclusive), in order, with the symbol var bound

to the integer; if the value of count is zero or negative, then the <expression>s are not evaluated.

When the loop completes, result is evaluated and its value is returned as the value of the dotimes

construction. If result is omitted, dotimes result is void.

(let ((l '()))

  (dotimes (i 4 l)

     (set! l (cons i l)))) => (3 2 1 0)

STklos syntax

(repeat count <expression1> <expression2> …) 

Evaluates the count expression, which must return an integer and then evaluates the <expression>s

once for each integer from zero (inclusive) to count (exclusive). The result of repeat is undefined.

This form could be easily simulated with dotimes. Its interest is that it is faster.

(repeat 3 (display "."))     => prints "..."

(repeat 0 (display "."))     => prints nothing

STklos syntax

(while <test> <expression1> <expression2> …) 

While evaluates the <expression>s until <test> returns a false value. The value returned by this form

is void.



STklos syntax

(until <test> <expression1> <expression2> …) 

Until evaluates the <expression>s until <while> returns a false value. The value returned by this

form is void.

STklos procedure

(dolist (x lst) body) 

(dolist (x lst result) body) 

This macro will iterate over lst, executing body for each element x. The symbol x will be captured

and bound in body. If result is provided, and is not x, this form returns result; otherwise, its result

is undefined.

(dolist (x '(10 20 30))

  (display (- x)) (newline))

-10

-20

-30

(let ((sum 0))

  (dolist (x '(1 2 3 4 5) sum)

    (inc! sum (square x))))       => 55

The form dolist is borrowed from Common Lisp. However, using dolist is not the preferred way to

process a list. For instance, the last example could be better rewritten in:

(apply + (map square '(1 2 3 4 5))

2.8. Delayed Evaluation

R
5
RS syntax

(delay <expression>) 

The delay construct is used together with the procedure force to implement lazy evaluation or



call by need. (delay <expression>) returns an object called a promise) which at some point in the

future may be asked (by the force procedure) to evaluate <expression>, and deliver the resulting

value. The effect of <expression> returning multiple values is unpredictable.

See the description of force for a more complete description of delay.

R
7
RS syntax

(delay-force <expression>) 

(lazy <expression>) 

The expression (delay-force expression) is conceptually similar to (delay (force expression)),

with the difference that forcing the result of delay-force will in effect result in a tail call to (force

expression), while forcing the result of (delay (force expression)) might not. Thus iterative lazy

algorithms that might result in a long series of chains of delay and force can be rewritten using

delay-force to prevent consuming unbounded space during evaluation.

The special form delay-force appears with name lazy in SRFI-45 (Primitives for Expressing Iterative

Lazy Algorithms).

R
5
RS procedure

(force promise) 

Forces the value of promise (see primitive delay). If no value has been computed for the promise,

then a value is computed and returned. The value of the promise is cached (or "memoized") so that

if it is forced a second time, the previously computed value is returned.

(force (delay (+ 1 2)))        =>  3

(let ((p (delay (+ 1 2))))

  (list (force p) (force p)))  =>  (3 3)

(define a-stream

  (letrec ((next (lambda (n)

                   (cons n (delay (next (+ n 1)))))))

    (next 0)))

(define head car)

(define tail (lambda (stream) (force (cdr stream))))

(head (tail (tail a-stream)))  =>  2

Force and delay are mainly intended for programs written in functional style. The following

examples should not be considered to illustrate good programming style, but they illustrate the

property that only one value is computed for a promise, no matter how many times it is forced.

http://srfi.schemers.org/srfi-45/srfi-45.html


(define count 0)

(define p (delay (begin (set! count (+ count 1))

                        (if (> count x)

                            count

                            (force p)))))

(define x 5)

p                     =>  a promise

(force p)             =>  6

p                     =>  a promise, still

(begin (set! x 10)

       (force p))     =>  6

 See R
5
RS for details on a posssible way to implement force and delay.

R
7
RS procedure

(promise? obj) 

Returns #t if obj is a promise, otherwise returns #f.

R
7
RS procedure

(make-promise obj) 

(eager obj) 

The make-promise procedure returns a promise which, when forced, will return obj . It is similar to

delay, but does not delay its argument: it is a procedure rather than syntax. If obj is already a

promise, it is returned.

The primitve make-promise appears with name eager in SRFI-45.

2.9. Quasiquotation

R
5
RS syntax

(quasiquote <template>) 

<template> `

"Backquote" or "quasiquote" expressions are useful for constructing a list or vector structure when

most but not all of the desired structure is known in advance. If no commas appear within the



<template>, the result of evaluating `<template> is equivalent to the result of evaluating '<template>.

If a comma appears within the <template>, however, the expression following the comma is

evaluated ("unquoted") and its result is inserted into the structure instead of the comma and the

expression. If a comma appears followed immediately by an at-sign (@), then the following

expression must evaluate to a list; the opening and closing parentheses of the list are then "stripped

away" and the elements of the list are inserted in place of the comma at-sign expression sequence.

A comma at-sign should only appear within a list or vector <template>.

`(list ,(+ 1 2) 4)  =>  (list 3 4)

(let ((name 'a)) `(list ,name ',name))

                    =>  (list a (quote a))

`(a ,(+ 1 2) ,@(map abs '(4 -5 6)) b)

                    =>  (a 3 4 5 6 b)

`((foo ,(- 10 3)) ,@(cdr '(c)) . ,(car '(cons)))

                    =>  ((foo 7) . cons)

`#(10 5 ,(sqrt 4) ,@(map sqrt '(16 9)) 8)

                    =>  #(10 5 2 4 3 8)

Quasiquote forms may be nested. Substitutions are made only for unquoted components appearing

at the same nesting level as the outermost backquote. The nesting level increases by one inside each

successive quasiquotation, and decreases by one inside each unquotation.

`(a `(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)

          =>  (a `(b ,(+ 1 2) ,(foo 4 d) e) f)

(let ((name1 'x)

      (name2 'y))

  `(a `(b ,,name1 ,',name2 d) e))

          =>  (a `(b ,x ,'y d) e)

The two notations `<template> and (quasiquote <template>) are identical in all respects.

,<expression> is identical to (unquote <expression>), and ,@<expression> is identical to (unquote-

splicing <expression>).

2.10. Macros

STklos supports hygienic macros such as the ones defined in R
5
RS as well as low level macros.

Low level macros are defined with define-macro whereas R
5
RS macros are defined with define-

syntax.
[1]

. Hygienic macros use the implementation called Macro by Example (Eugene Kohlbecker,

R
4
RS) done by Dorai Sitaram. This implementation generates low level STklos macros. This

implementation of hygienic macros is not expensive.

The major drawback of this implementation is that the macros are not referentially transparent

(see section Macros in R
4
RS for details). Lexically scoped macros (i.e., let-syntax and letrec-syntax

are not supported). In any case, the problem of referential transparency gains poignancy only when

let-syntax and letrec-syntax are used. So you will not be courting large-scale disaster unless you’re

using system-function names as local variables with unintuitive bindings that the macro can’t use.



However, if you must have the full R
5
RS macro functionality, you can do

(require "full-syntax")

to have access to the more featureful (but also more expensive) versions of syntax-rules. Requiring

"full-syntax" loads the version 2.1 of an implementation of hygienic macros by Robert Hieb and R.

Kent Dybvig.

STklos syntax

(define-macro (<name> <formals>) <body>) 

(define-macro <name> (lambda <formals> <body>)) 

define-macro can be used to define low-level macro (i.e. ,(emph "non hygienic") macros). This form

is similar to the defmacro form of Common Lisp.

(define-macro (incr x) `(set! ,x (+ ,x 1)))

(let ((a 1)) (incr a) a)   => 2

(define-macro (when test . body)

  `(if ,test ,@(if (null? (cdr body)) body `((begin ,@body)))))

(macro-expand '(when a b)) => (if a b)

(macro-expand '(when a b c d))

                           => (if a (begin b c d))

(define-macro (my-and . exprs)

  (cond

   ((null? exprs)        #t)

   ((= (length exprs) 1) (car exprs))

   (else                 `(if ,(car exprs)

                           (my-and ,@(cdr exprs))

                           #f))))

(macro-expand '(my-and a b c))

                          => (if a (my-and b c) #f)

R
5
RS syntax

(define-syntax <identifier> <transformer-spec>) 

<Define-syntax> extends the top-level syntactic environment by binding the <identifier> to the

specified transformer.



 <transformer-spec> should be an instance of syntax-rules.

(define-syntax let*

  (syntax-rules ()

    ((let* () body1 body2 ...)

     (let () body1 body2 ...))

    ((let* ((name1 val1) (name2 val2) ...)

       body1 body2 ...)

     (let ((name1 val1))

       (let* (( name2 val2) ...)

         body1 body2 ...))))

R
5
RS syntax

(syntax-rules <literals> <syntax-rule> …) 

<literals> is a list of identifiers, and each <syntax-rule> should be of the form

(pattern template)

An instance of <syntax-rules> produces a new macro transformer by specifying a sequence of

hygienic rewrite rules. A use of a macro whose name is associated with a transformer specified by

<syntax-rules> is matched against the patterns contained in the <syntax-rules>, beginning with the

leftmost syntax-rule. When a match is found, the macro use is transcribed hygienically according to

the template.

Each pattern begins with the name for the macro. This name is not involved in the matching and is

not considered a pattern variable or literal identifier.

 For a complete description of the Scheme pattern language, refer to R
5
RS.

R
5
RS syntax

(let-syntax <bindings> <body>) 

<Bindings> should have the form

((<keyword> <transformer spec>) ...)

Each <keyword> is an identifier, each <transformer spec> is an instance of syntax-rules, and <body>



should be a sequence of one or more expressions. It is an error for a <keyword> to appear more than

once in the list of keywords being bound.

The <body> is expanded in the syntactic environment obtained by extending the syntactic

environment of the let-syntax expression with macros whose keywords are the <keyword>s, bound

to the specified transformers. Each binding of a <keyword> has <body> as its region.

 let-syntax is available only after having required the file "full-syntax".

(let-syntax ((when (syntax-rules ()

                  ((when test stmt1 stmt2 ...)

                   (if test

                       (begin stmt1

                              stmt2 ...))))))

  (let ((if #t))

    (when if (set! if 'now))

    if))                           =>  now

(let ((x 'outer))

  (let-syntax ((m (syntax-rules () ((m) x))))

    (let ((x 'inner))

      (m))))                       =>  outer

R
5
RS syntax

(letrec-syntax <bindings> <body>) 

Syntax of letrec-syntax is the same as for let-syntax.

The <body> is expanded in the syntactic environment obtained by extending the syntactic

environment of the letrec-syntax expression with macros whose keywords are the <keyword>s,

bound to the specified transformers. Each binding of a <keyword> has the <bindings> as well as the

<body> within its region, so the transformers can transcribe expressions into uses of the macros

introduced by the letrec-syntax expression.

 letrec-syntax is available only after having required the file "full-syntax".

(letrec-syntax

  ((my-or (syntax-rules ()

            ((my-or) #f)

            ((my-or e) e)

            ((my-or e1 e2 ...)

             (let ((temp e1))

               (if temp

                   temp



                   (my-or e2 ...)))))))

  (let ((x #f)

        (y 7)

        (temp 8)

        (let odd?)

        (if even?))

    (my-or x

           (let temp)

           (if y)

           y)))        =>  7

STklos procedure

(macro-expand form) 

(macro-expand* form) 

macro-expand returns the macro expansion of form if it is a macro call, otherwise form is returned

unchanged.

(define-macro (add1 x) `(+ ,x 1))

(macro-expand '(add1 foo)) => (+ foo 1)

(macro-expand '(car bar))  => (car bar)

macro-expand returns the full macro expansion of form, that is it repeats the macro-expansion, while

the expanded form contains macro calls.

(define-macro (add2 x) `(add1 (add1 ,x)))

(macro-expand '(add2 foo)) => (add1 (add1 foo))

(macro-expand* '(add2 foo)) => (+ (+ foo 1) 1)

 macro-expand and macro-expand* expand only the global macros.

[1] Documentation about hygienic macros has been stolen in the SLIB manual



Chapter 3. Program structure

Since its origin, STklos offers a module system which can be used to organize a program into

separate environments (or name spaces). The module system is directly inherited from STk. This

module system is largely inspired from the one of Tung and Dybvig exposed in Tung and Dybvig

paper [TuD96]. As this module system, STk and STklos modules are defined to be easily used in an

interactive environment.

STklos modules provide a clean way to organize and enforce the barriers between the components

of a program. At this time, the current version of Scheme was R
5
RS which didn’t define a module

system. However, since then, R
7
RS has defined the notion of libraries, which are similar, in the

intent, to STklos modules. Consequently, STklos offers both systems: modules and libraries (the

latter being implemented on top of the former).

3.1. Modules

STklos syntax

(define-module <name> <expr1> <expr2> …) 

Define-module evaluates the expressions <expr1>, <expr2> … which constitute the body of the module

<name> in the environment of that module. Name must be a valid symbol or a list constitued of

symbols or positive integers. If name has not already been used to define a module, a new module,

named name, is created. Otherwise, the expressions <expr1>, <expr2> … are evaluated in the

environment of the (old) module <name>
[1]

Definitions done in a module are local to the module and do not interact with the definitions in

other modules. Consider the following definitions,

(define-module M1

   (define a 1))

(define-module M2

  (define a 2)

  (define b (* 2 x)))

(define-module (M2 m)

  (define a 100)

  (define x 200))

Here, three modules are defined and they all bind the symbol a to a value. However, since a has

been defined in distinct modules they denote three different locations.



The STklos module, which is predefined, is a special module which contains all the global bindings

of a R
7
RS program. A symbol defined in the STklos module, if not hidden by a local definition, is

always visible from inside a module. So, in the previous exemple, the x symbol refers the x symbol

defined in the STklos module, which is of course different of the one defined in the module (M2 m).

The result of define-module is void.


Internally, modules name are always represented by a symbol. If the module name

is given as a list, the internal name is built by appending all the components of the

list, separated by a '/' symbol. So the third module can be referenced with the

name (M2 m) of M2/m.

STklos procedure

(find-module name) 

(find-module name default) 

STklos modules are first class objects and find-module returns the module object associated to name,

if it exists. If there is no module associated to name, an error is signaled if no default is provided,

otherwise find-module returns default.

STklos procedure

(module? object) 

Returns #t if object is a module and #f otherwise.

(module? (find-module 'STklos))   => #t

(module? 'STklos)                 => #f

(module? 123 'no)                 => no

STklos procedure

(module-name module) 

Returns the internal name (a symbol) associated to a module. As said before, module name is always

represented as a symbol, even if expressed as a list.

(define-module (M a) )   ; or M/a

(define-module (M b) )   ; or M/b



(define-module M/c   )   ; or (M c)

(map (lambda(x) (module-name (find-module x))) '( (M a) M/b (M c) ))

                       => (M/a M/b M/c)

STklos procedure

(current-module) 

Returns the current module.

(define-module M

  (display

      (cons (eq? (current-module) (find-module 'M))

            (eq? (current-module) (find-module 'STklos)))))  |- (#t . #f)

STklos syntax

(select-module <name>) 

Changes the value of the current module to the module with the given name. The expressions

evaluated after select-module will take place in module name environment. Module name must have

been created previously by a define-module. The result of select-module is void.

Select-module is particularly useful when debugging since it allows to place toplevel evaluation in a

particular module. The following transcript shows an usage of select-module. 
[2]

):

stklos> (define foo 1)

stklos> (define-module bar (define foo 2))

stklos> foo

1

stklos> (select-module bar)

bar> foo

2

bar> (select-module stklos)

stklos>

STklos procedure

(symbol-value symbol module) 



(symbol-value symbol module default) 

Returns the value bound to symbol in module. If symbol is not bound, an error is signaled if no default

is provided, otherwise symbol-value returns default. Module can be an object module or a module

name.

STklos procedure

(symbol-value* symbol module) 

(symbol-value* symbol module default) 

Returns the value bound to symbol in module. If symbol is not bound, an error is signaled if no default

is provided, otherwise symbol-value returns default.

Note that this function searches the value of symbol in module and in the STklos module if module is

not a R
7
RS library.

STklos procedure

(symbol-bound? symb) 

(symbol-bound? symb module) 

Returns #t is symb is bound in module and #f otherwise. If module is omitted it defaults to the current

module.

STklos procedure

(module-symbols module) 

Returns the list of symbols defined or imported in module. Module can be an object module or a

module name.

STklos procedure

(module-symbols* module) 

Returns the the list of symbols acessible in module (that is the symbols defined in module and the one

defined in the STklos module if module is not a R
7
RS library.



STklos syntax

(export <export spec1> <export spec2> …) 

Specifies the symbols which are exported (i.e. visible outside the current module). By default,

symbols defined in a module are not visible outside this module, excepted if they appear in an

export clause.

An <export spec> takes one of the following forms:

• <identifier>

• (rename <identifier1> <identifier2>)

In the first form, <identifier> names a single binding defined within or imported into the module,

where the external name for the export is the same as the name of the binding within the module.

In the second form, the binding defined within or imported into the module and named by

<identifier1> in each (<identifier1> <identifier2>) pairing, using <identifier2> as the external

name.

The result of export is void.


the export form in STklos modules is compatible with the export clause in R

7
RS

libraries.

STklos syntax

(import <import set1> <import set2> …) 

An import declaration provides a way to import identifiers exported by a module. Each <import

set> names a set of bindings from a module and possibly specifies local names for the imported

bindings. It takes one of the following forms:

• <module name>

• (only <import set> <identifier> …)

• (except <import set> <identifier> …)

• (prefix <import set> <identifier>)

• (rename <import set> (<identifier1> <identifier2>) …)

In the first form, all of the identifiers in the named module’s export clauses are imported with the

same names (or the exported names if exported with rename).

The additional import set forms modify this set as follows:



• only produces a subset of the given <import set>} including only the listed identifiers (after any

renaming). It is an error if any of the listed identifiers are not found in the original set.

• except produces a subset of the given <import set>, excluding the listed identifiers (after any

renaming). It is an error if any of the listed identifiers are not found in the original set.

• rename modifies the given <import set>, replacing each instance of <identifier1> with

<identifier2>. It is an error if any of the listed <identifiers> are not found in the original set.

• prefix automatically renames all identifiers in the given <import set>, prefixing each with the

specified <identifier>.

(define-module M1

  (export a b)

  (define a 'M1-a)

  (define b 'M1-b))

(define-module M2

  (export b c d)

  (define b 'M2-b)

  (define c 'M2-c)

  (define d 'M2-d))

(define-module M3

  (import M1 M2)

  (display (list a b c d)))  |- (M1-a M2-b M2-c M2-d)

(define-module M4

  (import M2 M1)

  (display (list a b c d)))  |- (M1-a M1-b M2-c M2-d)

(define-module M1

  (export a b c d)

  (define a 1)

  (define b 2)

  (define c 3)

  (define d 4))

(define-module M2

  (import (prefix (rename (except M1 a)

                          (b bb) (c cc))

                  M1-))

  (display (module-symbols (current-module))))

                             |- (M1-bb M1-cc M1-d)

Here, M1 module exports the symbols a, b, c and d. In the M2 module, the except rule permits to

import only b, c and d. With rename, identifiers b and c of M1 are renamed bb and cc. Finally, with

prefix alls identifier names are prefixed by M1-.




the import form in STklos modules is compatible with the import clause in R

7
RS

libraries.


The module STklos, which contains the global variables is always implicitly

imported from a module. Furthermore, this module is always placed at the end of

the list of imported modules.

Note that importing a module will try to load a file if the module is not already defined. For

instance,

(define-module M

   (import (srfi 1) (foo bar baz))

    ...)

will load the file srfi/1 and foo/bar/baz modules (or libraries) if they are not yet defined (habitual

rules on the load paths and the load suffixes applies to find those files).

STklos procedure

(module-imports module) 

Returns the list of modules that module imports (that is, the ones it depends on).

STklos procedure

(module-exports module) 

Returns the list of symbols exported by module. Note that this function returns the list of symbols

given in the module export clause and that some of these symbols can be not yet defined.

(define-module M

  (export a b (rename c M-c))

  (display (module-exports (current-module))))

                         |- (a b M-c)

STklos procedure

(module-immutable! mod) 



Makes the module mod immutable, so that it will be impossible to define new symbols in it or change

the value of already defined ones.

STklos procedure

(module-mutable? mod) 

Returns #t if mod is an immutable module and #f otherwise. Note that the SCHEME module, which

contains the original bindings of the STklos at boot time, is immutable. The parameter mod can be a

module object or a module name.

(module-mutable? (find-module 'STklos)) => #t

(module-mutable? (find-module 'SCHEME)) => #f

(module-mutable? 'SCHEME)               => #f

STklos syntax

(in-module mod s) 

(in-module mod s default) 

This form returns the value of symbol with name s in the module with name mod. If this symbol is

not bound, an error is signaled if no default is provided, otherwise in-module returns default. Note

that the value of s is searched in mod and all the modules it imports.

This form is in fact a shortcut. In effect,

(in-module my-module foo)

is equivalent to

(symbol-value* 'foo (find-module 'my-module))

STklos procedure

(all-modules) 

Returns the list of all the living modules (or libraries). Use module-list to obtain a list of modules

without libraries.



STklos procedure

(module-list) 

Returns the list of all the living modules.

3.2. Libraries

The library concept is defined in R
7
RS ans is supported in STklos. As said before, libraries are

implemented with modules. Briefly stated, the library |(lib a b)| will be implemented with a

module whose name is |lib/a/b| and the |STklos| module has been deleted from the import list.

R
7
RS syntax

(define-library <library name> <library declaration> …) 

The form define-library is defined in R
7
RS. The <library name> can be a symbol or a list (as

modules).

A <library declaration> is any of

• (export <export spec> …)

• (import <import set> …)

• (begin <command or definition> …)

• (include <filename1> <filename2> …)

• (include-ci <filename1> <filename2> …)

• (include-library-declarations <filename1> <filename2> …)

• (cond-expand <clause1> <clause2> …)

See R
7
RS for more information (or the specific entries in this document) about each <library

declaration>.


R

7
RS permits to use library declarations only in a library definition; STklos

permits to use them (except include-library-declarations) anywhere at toplevel.

STklos procedure



(library? object) 

Returns #t if object is a module defined as a R
7
RS library and #f otherwise. Note that R

7
RS libraries,

since they are implemented using STklos modules, are also modules.

(define-module a)

(define-library (b))

(module? (find-module 'a))     => #t

(module? (find-module '(b)))   => #t

(library? (find-module 'a))    => #f

(library? (find-module '(b)))  => #t

STklos procedure

(library-name lib) 

Returns the name of lib if it was defined as an R
7
RS library, and #f if the library is anonymous. If

lib is not a library, library-name raises an error. If a name is returned, it is as a list.

(define-library (example cool-library))

(library-name (find-module 'example/cool-library))   => (example cool-library)

(library-name (find-module '(example cool-library))) => (example cool-library)

(module-name  (find-module 'example/cool-library))   => example/cool-library

(module-name  (find-module '(example cool-library))) => example/cool-library

(define-module example/a-module)

(library-name (find-module 'example/a-module))     => error

(library-name quotient)                            => error

STklos procedure

(library-list) 

Returns the list of all the living libraries.



3.3. Variables and Constants

R
5
RS syntax

(define <variable> <expresssion>) 

(define (<variable> <formals>) <body>) 

(define (<variable> . <formal>) <body>) 

Theses forms bind an identifier to a a value.

The first form binds the <variable> to the result of the evaluation of <expression>.

The second form of define is equivalent to

(define <variable>

        (lambda (<formals>) body))

The third define form, where <formal> is a single variable, is equivalent to

(define <variable>

        (lambda <formals> body))


The define form accepts also the definition of higher order lambda as defined in

SRFI-219 (Define higher-order lambda).

STklos procedure

(define-constant <variable> <expression>) 

(define-constant (<variable> <formals>) body) 

(define-constant (<variable> . <formal>) body) 

This form is similar to define, except the binding of <variable> which is non mutable.

(define-constant a 'hello)

(set! a 'goodbye)             => error

(define a 2)                  ; is  ok (it's a new binding)

(define-constant ((foo a) b)  ; foo is (lambda (a) (lambda (b) ...)))

    ...)

STklos procedure

http://srfi.schemers.org/srfi-219/srfi-219.html


(symbol-immutable! symb) 

(symbol-immutable! symb mod) 

Makes the symbol symb in module mod immutable. If mod is not specified, the current module is used.

(define a 1)

(symbol-mutable? 'a)     => #t

(symbol-immutable! 'a)

(symbol-mutable? 'a)     => #f

(set! a 10)              => error

STklos procedure

(symbol-mutable? symb) 

(symbol-mutable? symb module) 

Returns #t if symb is mutable in module and #f otherwise. If module is omitted it defaults to the

current module. Note that imported symbols are always not mutable.

(define-module M

   (export x)

   (define x 1))

(symbol-mutable? 'x (find-module 'M)) => #t

(symbol-mutable? 'x)                  => error, if not defined in current module

(import M)

(symbol-mutable? 'x)                  => #f

[1] In fact define-module on a given name defines a new module only the first time it is invoked on this name. By this way,

interactively reloading a module does not define a new entity, and the other modules which use it are not altered.

[2] This transcript uses the default toplevel loop which displays the name of the current module in the evaluator prompt.



Chapter 4. Standard Procedures

4.1. Equivalence predicates

A predicate is a procedure that always returns a boolean value (#t or #f). An equivalence predicate

is the computational analogue of a mathematical equivalence relation (it is symmetric, reflexive,

and transitive). Of the equivalence predicates described in this section, eq? is the finest or most

discriminating, and equal? is the coarsest. Eqv? is slightly less discriminating than eq?.

R
5
RS procedure

(eqv? obj1 obj2) 

The eqv? procedure defines a useful equivalence relation on objects. Briefly, it returns #t if obj1 and

obj2 should normally be regarded as the same object. This relation is left slightly open to

interpretation, but the following partial specification of eqv? holds for all implementations of

Scheme.

The eqv? procedure returns #t if:

• obj1 and obj2 are both #t or both #f.

• obj1 and obj2 are both symbols and

(string=? (symbol->string obj1)

          (symbol->string obj2))     =>  #t

 This assumes that neither obj1 nor obj2 is an "uninterned symbol".

• obj1 and obj2 are both keywords and

(string=? (keyword->string obj1)

          (keyword->string obj2))    =>  #t

• obj1 and obj2 are both numbers, are numerically equal, and are either both exact or both

inexact.

• obj1 and obj2 are both characters and are the same character according to the char=?

procedure`.

• both obj1 and obj2 are the empty list.

• obj1 and obj2 are pairs, vectors, or strings that denote the same locations in the store.

• obj1 and obj2 are procedures whose location tags are equal.



STklos extends R
5
RS eqv? to take into account the keyword type. Here are some examples:

(eqv? 'a 'a)                     =>  #t

(eqv? 'a 'b)                     =>  #f

(eqv? 2 2)                       =>  #t

(eqv? :foo :foo)                 =>  #t

(eqv? #:foo :foo)                =>  #t

(eqv? :foo :bar)                 =>  #f

(eqv? '() '())                   =>  #t

(eqv? 100000000 100000000)       =>  #t

(eqv? (cons 1 2) (cons 1 2))     =>  #f

(eqv? (lambda () 1)

      (lambda () 2))             =>  #f

(eqv? #f 'nil)                   =>  #f

(let ((p (lambda (x) x)))

  (eqv? p p))                    =>  #t

The following examples illustrate cases in which the above rules do not fully specify the behavior of

eqv?. All that can be said about such cases is that the value returned by eqv? must be a boolean.

(eqv? "" "")             =>  unspecified

(eqv? '#() '#())         =>  unspecified

(eqv? (lambda (x) x)

      (lambda (x) x))    =>  unspecified

(eqv? (lambda (x) x)

      (lambda (y) y))    =>  unspecified


In fact, the value returned by STklos depends on the way code is entered and can

yield #t in some cases and #f in others.

See R
5
RS for more details on eqv?.

R
5
RS procedure

(eq? obj1 obj2) 

Eq? is similar to eqv? except that in some cases it is capable of discerning distinctions finer than

those detectable by eqv?.

Eq? and eqv? are guaranteed to have the same behavior on symbols, keywords, booleans, the empty

list, pairs, procedures, and non-empty strings and vectors. Eq?'s behavior on numbers and

characters is implementation-dependent, but it will always return either true or false, and will

return true only when eqv? would also return true. Eq? may also behave differently from eqv? on

empty vectors and empty strings.

Note that:



• STklos extends R
5
RS eq? to take into account the keyword type.

• In STklos, comparison of character returns #t for identical characters and #f otherwise.

(eq? 'a 'a)                     =>  #t

(eq? '(a) '(a))                 =>  unspecified

(eq? (list 'a) (list 'a))       =>  #f

(eq? "a" "a")                   =>  unspecified

(eq? "" "")                     =>  unspecified

(eq? :foo :foo)                 =>  #t

(eq? :foo :bar)                 =>  #f

(eq? '() '())                   =>  #t

(eq? 2 2)                       =>  unspecified

(eq? #A #A)                   =>  #t (unspecified in r5rs)

(eq? car car)                   =>  #t

(let ((n (+ 2 3)))

  (eq? n n))                    =>  #t (unspecified in r5rs)

(let ((x '(a)))

  (eq? x x))                    =>  #t

(let ((x '#()))

  (eq? x x))                    =>  #t

(let ((p (lambda (x) x)))

  (eq? p p))                    =>  #t

(eq? :foo :foo)                 =>  #t

(eq? :bar bar:)                 =>  #t

(eq? :bar :foo)                 =>  #f

R
5
RS procedure

(equal? obj1 obj2) 

Equal? recursively compares the contents of pairs, vectors, and strings, applying eqv? on other

objects such as numbers and symbols. A rule of thumb is that objects are generally equal? if they

print the same. Equal? always terminates even if its arguments are circular data structures.

(equal? 'a 'a)                  =>  #t

(equal? '(a) '(a))              =>  #t

(equal? '(a (b) c)

        '(a (b) c))             =>  #t

(equal? "abc" "abc")            =>  #t

(equal? 2 2)                    =>  #t

(equal? (make-vector 5 'a)

        (make-vector 5 'a))     =>  #t

(equal? '#1=(a b . #1#)

        '#2=(a b a b . #2#))    =>  #t



 A rule of thumb is that objects are generally equal? if they print the same.

4.2. Numbers

R
5
RS description of numbers is quite long and will not be given here. STklos support the full

number tower as described in R
5
RS; see this document for a complete description.

STklos extends the number syntax of R5RS with the following inexact numerical constants: +inf.0

(infinity), -inf.0 (negative infinity), +nan.0 (not a number), and -nan.0 (not a number).

R
5
RS procedure

(number? obj) 

(complex? obj) 

(real? obj) 

(rational? obj) 

(integer? obj) 

These numerical type predicates can be applied to any kind of argument, including non-numbers.

They return #t if the object is of the named type, and otherwise they return #f. In general, if a type

predicate is true for a number then all higher type predicates are also true for that number.

Consequently, if a type predicate is false of a number, then all lower type predicates are also false of

that number.

If z is an inexact complex number, then (real? z) is true if and only if (zero? (imag-part z)) is true.

If x is an inexact real number, then (integer? x) is true if and only if (and (finite? x) (= x (round
x)))

  (complex? 3+4i)         =>  #t

  (complex? 3)            =>  #t

  (real? 3)               =>  #t

  (real? -2.5+0.0i)       =>  #t

  (real? #e1e10)          =>  #t

  (rational? 6/10)        =>  #t

  (rational? 6/3)         =>  #t

  (integer? 3+0i)         =>  #t

  (integer? 3.0)          =>  #t

  (integer? 3.2)          =>  #f

  (integer? 8/4)          =>  #t

  (integer? "no")         =>  #f

  (complex? +inf.0)       =>  #t

  (real? -inf.0)          =>  #t

  (rational? +inf.0)      =>  #f

  (integer? -inf.0)       =>  #f



R
5
RS procedure

(exact? z) 

(inexact? z) 

These numerical predicates provide tests for the exactness of a quantity. For any Scheme number,

precisely one of these predicates is true.

R
7
RS procedure

(inexact z) 

(exact z) 

These R
7
RS procedures correspond to the R

5
RS exact→inexact and inexact→exact procedure

respectively

R
7
RS procedure

(exact→integer? z) 

Returns #t if z is both exact and an integer; otherwise returns #f.

(exact-integer? 32)   => #t

(exact-integer? 32.0) => #f

(exact-integer? 32/5) => #f

STklos procedure

(bignum? x) 

This predicates returns #t if x is an integer number too large to be represented with a native

integer.

(bignum? (expt 2 300))     => `#t`   ;; (very likely)

(bignum? 12)               => `#f`

(bignum? "no")             => `#f`

R
5
RS procedure



(= z1 z2 z3 …) 

(< x1 x2 x3 …) 

(> x1 x2 x3 …) 

(⇐ x1 x2 x3 …) 

(>= x1 x2 x3 …) 

These procedures return #t if their arguments are (respectively): equal, monotonically increasing,

monotonically decreasing, monotonically nondecreasing, or monotonically nonincreasing, and #f

otherwise. If any of the arguments are +nan.0, all the predicates return #f.

(= +inf.0 +inf.0)           =>  #t

(= -inf.0 +inf.0)           =>  #f

(= -inf.0 -inf.0)           =>  #t

For any finite real number x:

(< -inf.0 x +inf.0)         =>  #t

(> +inf.0 x -inf.0)         =>  #t

R
5
RS procedure

(finite? z) 

(infinite? z) 

(zero? z) 

(positive? x) 

(negative? x) 

(odd? n) 

(even? n) 

These numerical predicates test a number for a particular property, returning #t or #f.

(positive? +inf.0)          ==>  #t

(negative? -inf.0)          ==>  #t

(finite? -inf.0)            ==>  #f

(infinite? +inf.0)          ==>  #t

R
7
RS procedure

(nan? z) 

The nan? procedure returns #t on +nan.0, and on complex numbers if their real or imaginary parts



or both are +nan.0. Otherwise it returns #f.

(nan? +nan.0)          =>  #t

(nan? 32)              =>  #f

(nan? +nan.0+5.0i)     =>  #t

(nan? 1+2i)            =>  #f

STklos procedure

(make-nan negative? quiet? payload) 

(make-nan negative? quiet? payload float) 

Returns a NaN whose sign bit is equal to negative? (#t for negative, #f for positive), whose quiet bit

is equal to quiet? (#t for quiet, #f for signaling), and whose payload is the positive exact integer

payload. It is an error if payload is larger than a NaN can hold.

The optional parameter float, is never used in STklos.

This function is defined in SRFI-208.

STklos procedure

(nan-negative? nan) 

returns #t if the sign bit of nan is set and #f otherwise.

STklos procedure

(nan-quiet? nan) 

returns #t if nan is a quiet NaN.

STklos procedure

(nan-payload nan) 

returns the payload bits of nan as a positive exact integer.

http://srfi.schemers.org/srfi-208/srfi-208.html


STklos procedure

(nan=? nan1 nan2) 

Returns #t if nan1 and nan2 have the same sign, quiet bit, and payload; and #f otherwise.

R
5
RS procedure

(max x1 x2 …) 

(min x1 x2 …) 

These procedures return the maximum or minimum of their arguments.

(max 3 4)              =>  4    ; exact

(max 3.9 4)            =>  4.0  ; inexact

For any real number x:

(max +inf.0 x)         =>  +inf.0

(min -inf.0 x)         =>  -inf.0

 If any argument is inexact, then the result will also be inexact

R
7
RS procedure

(floor/ n1 n2) 

(floor-quotient n1 n2) 

(floor-remainder n1 n2) 

(truncate/ n1 n2) 

(truncate-quotient n1 n2) 

(truncate-remainder n1 n2) 

These procedures implement number-theoretic (integer) division. It is an error if n2 is zero. The

procedures ending in '/' return two integers; the other procedures return an integer. All the

procedures compute a quotient q and remainder r such that n1=n2*q+r.

See R
7
RS for more information.

(floor/ 5 2)         => 2 1

(floor/ -5 2)        => -3 1

(floor/ 5 -2)        => -3 -1

(floor/ -5 -2)       => 2 -1



(truncate/ 5 2)      => 2 1

(truncate/ -5 2)     => -2 -1

(truncate/ 5 -2)     => -2 1

(truncate/ -5 -2)    => 2 -1

(truncate/ -5.0 -2)  => 2.0 -1.0%

R
5
RS procedure

(+ z1 …) 

(* z1 …) 

These procedures return the sum or product of their arguments.

(+ 3 4)                 =>  7

(+ 3)                   =>  3

(+)                     =>  0

(+ +inf.0 +inf.0)       =>  +inf.0

(+ +inf.0 -inf.0)       =>  +nan.0

(* 4)                   =>  4

(*)                     =>  1

(* 5 +inf.0)            =>  +inf.0

(* -5 +inf.0)           =>  -inf.0

(* +inf.0 +inf.0)       =>  +inf.0

(* +inf.0 -inf.0)       =>  -inf.0

(* 0 +inf.0)            =>  +nan.0

 For any finite number z:

      (+ +inf.0 z)      =>  +inf.0

      (+ -inf.0 z)      =>  -inf.0

R
5
RS procedure

(- z) 

(- z1 z2) 

(/ z) 

(/ z1 z2 …) 

With two or more arguments, these procedures return the difference or quotient of their

arguments, associating to the left. With one argument, however, they return the additive or

multiplicative inverse of their argument.



(- 3 4)                 =>  -1

(- 3 4 5)               =>  -6

(- 3)                   =>  -3

(- +inf.0 +inf.0)       => +nan.0

(/ 3 4 5)               =>  3/20

(/ 3)                   =>  1/3

(/ 0.0)                 => +inf.0

(/ -0.0)                => -inf.0

(- 0.0)                 => -0.0

(/ 0)                   => error (division by 0)

R
5
RS procedure

(abs z) 

Abs returns the absolute value of its argument.

(abs -7)                =>  7

(abs -inf.0)            => +inf.0

(abs -3+4i)             => 5

(abs -3.0-4i)           => 5.0


STklos extends the R

7
RS abs function, by allowing its argument to be a complex

number. In this case, abs returns the magnitude of its argument.

R
5
RS procedure

(quotient n1 n2) 

(remainder n1 n2) 

(modulo n1 n2) 

These procedures implement number-theoretic (integer) division. n2 should be non-zero. All three

procedures return integers.

If n1/n2 is an integer:

(quotient n1 n2)   => n1/n2

(remainder n1 n2)  => 0

(modulo n1 n2)     => 0

If n1/n2 is not an integer:



(quotient n1 n2)   => nq

(remainder n1 n2)  => nr

(modulo n1 n2)     => nm

where nq is n1/n2 rounded towards zero, 0 < abs(nr) < abs(n2), 0 < abs(nm) < abs(n2), nr and nm

differ from n1 by a multiple of n2, nr has the same sign as n1, and nm has the same sign as n2.

From this we can conclude that for integers n1 and n2 with n2 not equal to 0,

 (= n1 (+ (* n2 (quotient n1 n2))

          (remainder n1 n2)))   =>  #t

provided all numbers involved in that computation are exact.

(modulo 13 4)           =>  1

(remainder 13 4)        =>  1

(modulo -13 4)          =>  3

(remainder -13 4)       =>  -1

(modulo 13 -4)          =>  -3

(remainder 13 -4)       =>  1

(modulo -13 -4)         =>  -1

(remainder -13 -4)      =>  -1

(remainder -13 -4.0)    =>  -1.0  ; inexact

R
5
RS procedure

(gcd n1 …) 

(lcm n1 …) 

These procedures return the greatest common divisor or least common multiple of their

arguments. The result is always non-negative.

(gcd 32 -36)            =>  4

(gcd)                   =>  0

(lcm 32 -36)            =>  288

(lcm 32.0 -36)          =>  288.0  ; inexact

(lcm)                   =>  1



R
5
RS procedure

(numerator q) 

(denominator q) 

These procedures return the numerator or denominator of their argument; the result is computed

as if the argument was represented as a fraction in lowest terms. The denominator is always

positive. The denominator of 0 is defined to be 1.

(numerator (/ 6 4))  =>  3

(denominator (/ 6 4))  =>  2

(denominator

(exact->inexact (/ 6 4))) => 2.0

R
5
RS procedure

(floor x) 

(ceiling x) 

(truncate x) 

(round x) 

These procedures return integers. Floor returns the largest integer not larger than x. Ceiling

returns the smallest integer not smaller than x. Truncate returns the integer closest to x whose

absolute value is not larger than the absolute value of x. Round returns the closest integer to x,

rounding to even when x is halfway between two integers.


Round rounds to even for consistency with the default rounding mode specified by

the IEEE floating point standard.


If the argument to one of these procedures is inexact, then the result will also be

inexact. If an exact value is needed, the result should be passed to the

inexact→exact procedure.

(floor -4.3)          =>  -5.0

(ceiling -4.3)        =>  -4.0

(truncate -4.3)       =>  -4.0

(round -4.3)          =>  -4.0

(floor 3.5)           =>  3.0

(ceiling 3.5)         =>  4.0

(truncate 3.5)        =>  3.0

(round 3.5)           =>  4.0  ; inexact

(round 7/2)           =>  4    ; exact



(round 7)             =>  7

R
5
RS procedure

(rationalize x y) 

Rationalize returns the simplest rational number differing from x by no more than y. A rational

number r1 is simpler than another rational number r2 if r1 = p1/q1 and r2 = p2/q2 (in lowest terms)

and abs(p1) ⇐ abs(p2) and abs(q1) ⇐ abs(q2). Thus 3/5 is simpler than 4/7. Although not all

rationals are comparable in this ordering (consider 2/7 and 3/5) any interval contains a rational

number that is simpler than every other rational number in that interval (the simpler 2/5 lies

between 2/7 and 3/5). Note that 0 = 0/1 is the simplest rational of all.

(rationalize

   (inexact->exact .3) 1/10)  => 1/3    ; exact

(rationalize .3 1/10)         => #i1/3  ; inexact

R
5
RS procedure

(exp z) 

(log z) 

(log z b) 

(sin z) 

(cos z) 

(tan z) 

(asin z) 

(acos z) 

(atan z) 

(atan y x) 

These procedures compute the usual transcendental functions. Log computes the natural logarithm

of z (not the base ten logarithm). Asin, acos, and atan compute arcsine, arccosine, and arctangent,

respectively. The two-argument variant of log computes the logarithm of x in base b as

(/ (log x) (log b))

The two-argument variant of atan computes

(angle (make-rectangular x y))

When it is possible these procedures produce a real result from a real argument.



STklos procedure

(sinh z) 

(cosh z) 

(tanh z) 

(asinh z) 

(acosh z) 

(atanh z) 

These procedures compute the hyperbolic trigonometric functions.

(sinh 1)     => 1.1752011936438

(sinh 0+1i)  => 0.0+0.841470984807897i

(cosh 1)     => 1.54308063481524

(cosh 0+1i)  => 0.54030230586814

(tanh 1)     => 0.761594155955765

(tanh 0+1i)  => 0.0+1.5574077246549i

(asinh 1)    => 0.881373587019543

(asinh 0+1i) => 0+1.5707963267949i

(acosh 0)    => 0+1.5707963267949i

(acosh 0+1i) => 1.23340311751122+1.5707963267949i

(atanh 1)    => error

(atanh 0+1i) => 0.0+0.785398163397448i

In general, (asinh (sinh x)) and similar compositions should be equal to x, except for inexactness

due to the internal floating point number approximation for real numbers.

(sinh (asinh 0+1i)) => 0.0+1.0i

(cosh (acosh 0+1i)) => 8.65956056235493e-17+1.0i

(tanh (atanh 0+1i)) => 0.0+1.0i

These functions will always return an exact result for the following arguments:

(sinh 0.0)     => 0

(cosh 0.0)     => 1

(tanh 0.0)     => 0

(asinh 0.0)    => 0

(acosh 1.0)    => 0

(atanh 0.0)    => 0

STklos procedure

(radians→degrees r) 



(degrees→radians d) 

These procedures convert angles from radians into degrees and from degrees into radians.

R
5
RS procedure

(sqrt z) 

Returns the principal square root of z. The result will have either positive real part, or zero real

part and non-negative imaginary part.

R
7
RS procedure

(square z) 

Returns the square of z. This is equivalent to (* z z).

(square 42)     => 1764

(square 2.0)    => 4.0

R
7
RS procedure

(exact-integer-sqrt k) 

Returns two non negatives integers s and r where k=s2+r and k<(s+1)2.

(exact-integer-sqrt 4)     => 2 0

(exact-integer-sqrt 5)     => 2 1

STklos procedure

(exact-integer-log n b) 

Exact-integer-log is to log what exact-integer-sqrt is to sqrt.

Returns two values: the first value is the largest integer number less than or equal to the logarithm

of n in base b. The second value is the difference between n and (expt b k), where k is the first



value.

Both arguments must be exact, and the resulting values are exact integers. Also, both arguments

are mandatory, since it is no meaningful in this context to use base e.

(exact-integer-log 8 2)  => 3,0

(exact-integer-log 11 2) => 3,3

(exact-integer-log

         (expt 3 5)

         (expt 3 4))     => 1, 162

(exact-integer-log 16 2) => 4, 0

(exact-integer-log 19 1) => 4, 3

(exact-integer-log

         (expt 6 10000)

         (expt 6 1000)) => 10, 0

(exact-integer-log 2 1) => error

(exact-integer-log 0 5) => error

(exact-integer-log 0 0) => error

R
5
RS procedure

(expt z1 z2) 

Returns z1 raised to the power z2.

 0,(sup "z") is 1 if z = 0 and 0 otherwise.

R
5
RS procedure

(make-rectangular x1 x2) 

(make-polar x3 x) 

(real-part z) 

(imag-part z) 

(magnitude z) 

(angle z) 

If x1, x2, x3, and x4 are real numbers and z is a complex number such that

z = x1 + x2.i = x3 . ei.x4)

Then

(make-rectangular x1 x2)       => z

(make-polar x3 x4)             => z



(real-part z)                  => x1

(imag-part z)                  => x2

(magnitude z)                  => abs(x3)

(angle z)                      => xa

where -π < xa ⇐ π with xa = x4 + 2πn for some integer n.

(angle +inf.0)                 => 0.0

(angle -inf.0)                 => 3.14159265358979

 Magnitude is the same as abs for a real argument.

R
5
RS procedure

(exact→inexact z) 

(inexact→exact z) 

Exact→inexact returns an inexact representation of z. The value returned is the inexact number that

is numerically closest to the argument. Inexact→exact returns an exact representation of z. The

value returned is the exact number that is numerically closest to the argument.

R
5
RS procedure

(number→string z) 

(number→string z radix) 

Radix must be an exact integer, either 2, 8, 10, or 16. If omitted, radix defaults to 10. The procedure

number→string takes a number and a radix and returns as a string an external representation of the

given number in the given radix such that

(let ((number number)

      (radix radix))

  (eqv? number

       (string->number (number->string number radix) radix)))

is true. It is an error if no possible result makes this expression true.

If z is inexact, the radix is 10, and the above expression can be satisfied by a result that contains a

decimal point, then the result contains a decimal point and is expressed using the minimum

number of digits (exclusive of exponent and trailing zeroes) needed to make the above expression

true; otherwise the format of the result is unspecified.



The result returned by number→string never contains an explicit radix prefix.


The error case can occur only when z is not a complex number or is a complex

number with a non-rational real or imaginary part.


If z is an inexact number represented using flonums, and the radix is 10, then the

above expression is normally satisfied by a result containing a decimal point. The

unspecified case allows for infinities, NaNs, and non-flonum representations.

R
5
RS procedure

(string→number string) 

(string→number string radix) 

Returns a number of the maximally precise representation expressed by the given string. Radix

must be an exact integer, either 2, 8, 10, or 16. If supplied, radix is a default radix that may be

overridden by an explicit radix prefix in string (e.g. ,(code ""#o177"")). If radix is not supplied, then

the default radix is 10. If string is not a syntactically valid notation for a number, then

string→number returns #f.

(string->number "100")        =>  100

(string->number "100" 16)     =>  256

(string->number "1e2")        =>  100.0

(string->number "15##")       =>  1500.0

(string->number "+inf.0")     =>  +inf.0

(string->number "-inf.0")     =>  -inf.0

STklos procedure

(bit-and n1 n2 …) 

(bit-or n1 n2 …) 

(bit-xor n1 n2 …) 

(bit-not n) 

(bit-shift n m) 

These procedures allow the manipulation of integers as bit fields. The integers can be of arbitrary

length. Bit-and, bit-or and bit-xor respectively compute the bitwise ,(emph "and"), inclusive and

exclusive ,(emph "or"). bit-not returns the bitwise ,(emph "not") of n. bit-shift returns the bitwise

,(emph "shift") of n. The integer n is shifted left by m bits; If m is negative, n is shifted right by -m bits.

(bit-or 5 3)       => 7

(bit-xor 5 3)      => 6

(bit-and 5 3)      => 1



(bit-not 5)        => -6

(bit-or 1 2 4 8)   => 15

(bit-shift 5 3)    => 40

(bit-shift 5 -1)   => 2

STklos procedure

(random-integer n) 

Return an integer in the range [0, …, n[. Subsequent results of this procedure appear to be

independent uniformly distributed over the range [0, …, n[. The argument n must be a positive

integer, otherwise an error is signaled. This function is equivalent to the eponym function of SRFI-

27 (Source of random bits).

STklos procedure

(random-real) 

Return a real number r such that 0 < r < 1. Subsequent results of this procedure appear to be

independent uniformly distributed. This function is equivalent to the eponym function of SRFI-27

(Source of random bits).

STklos procedure

(decode-float n) 

decode-float returns three exact integers: significand, exponent and sign (where -1 ⇐ sign ⇐ 1).

The values returned by decode-float satisfy:

n = (* sign significand (expt 2 exponent))

Here is an example of decode-float usage.

(receive l (decode-float -1.234) l)

                    => (5557441940175192 -52 -1)

(exact->inexact (* -1

                    5557441940175192

                    (expt 2 -52)))

                    => -1.234

http://srfi.schemers.org/srfi-27/srfi-27.html
http://srfi.schemers.org/srfi-27/srfi-27.html
http://srfi.schemers.org/srfi-27/srfi-27.html


STklos procedure

(encode-float significand exponent sign) 

encode-float does the inverse work of decode-float: it accepts three numbers, significand, exponent

and sign, and returns the floating point number represented by them.

When significand is #f, a NaN will be returned. When significand is #t, positive or negative infinity

is returned, depending on the value of sign.

Otherwise, the number returned is

n = (* sign significand (expt 2 exponent))

Both significand and exponent must be within their proper ranges:

0 < significand ⇐ float-max-significand, and

float-min-exponent ⇐ exponent ⇐ float-max-exponent.

(encode-float (#t 0  1)) => +inf.0

(encode-float (#t 0 -1)) => -inf.0

(encode-float (#f 0  1)) => +nan.0

(decode-float -0.01)

=> 5764607523034235

=> -59

=> -1

(inexact (encode-float 5764607523034235 -59 -1)) => -0.01

STklos procedure

(float-max-significand) 

(float-min-exponent) 

(float-max-exponent) 

These procedures return the maximum significand value and the minimum and maximum values

for the exponent when calling the encode-float procedure.

STklos procedure



(integer-length n) 

Integer-length returns the necessary number of bits to represent n in 2’s complement, assuming a

leading 1 bit when n is negative. When n is zero, the procedure returns zero. This procedure works

for any type of integer (fixnums and bignums).

(integer-length -3)            => 2

(integer-length -2)            => 1

(integer-length -1)            => 0

(integer-length 0)             => 0

(integer-length 1)             => 1

(integer-length 2)             => 2

(integer-length 3)             => 2

(integer-length (expt 2 5000)) => 5001

STklos procedure

(integer-length n) 

Integer-length returns the necessary number of bits to represent n in 2’s complement, assuming a

leading 1 bit when n is negative. When n is zero, the procedure returns zero. This procedure works

for any type of integer (fixnums and bignums).

(integer-length -3)            => 2

(integer-length -2)            => 1

(integer-length -1)            => 0

(integer-length 0)             => 0

(integer-length 1)             => 1

(integer-length 2)             => 2

(integer-length 3)             => 2

(integer-length (expt 2 5000)) => 5001

STklos procedure

(1+ x) 

(1- x) 

These procedures return x plus one and x minus one, respectively. Note that the value of x is not

changed.

(define x 10)



(1+ x)          => 11

x               => 10

(1- x)          => 9

x               => 10

STklos procedure

(inc! place) 

(inc! place val) 

(dec! place) 

(dec place val) 

These forms increment or decrement the value contained in place by val. If ommitted, val defaults

to 1. The result of both forms is undefined.

Since STklos permits generalized set!, place may be a list of the form (proc a1 a2 …). In this case,

these forms call the setter of proc.

(define x 10)

(inc! x)

x                        => 11

(dec! x 10)

x                        => 1

(define l (list 1 2 3))

(inc! (car l))

(dec! (list-ref l 1) 20)

l                        => (2 -18 3)

4.2.1. Fixnums

STklos defines small integers as fixnums. Operations on fixnums are generally faster than

operations which accept general numbers. Fixnums operations, as described below, may produce

results which are incorrect if some temporary computation falls outside the range of fixnum. These

functions should be used only when speed really matters.

The functions defined in this section are conform to the ones defined in SRFI-143 (Fixnums)

STklos procedure

(fixnum? obj) 

Returns #t if obj is an exact integer within the fixnum range, #f otherwise.

http://srfi.schemers.org/srfi-143/srfi-143.html


STklos procedure

(fixnum-width) 

Returns the number of bits used to represent a fixnum number.

STklos procedure

(least-fixnum) 

(greatest-fixnum) 

These procedures return the minimum value and the maximum value of the fixnum range.

STklos procedure

(fxzero? obj) 

fxzero? returns #t if obj is the fixnum zero and returns #f if it is a non-zero fixnum.

  (fxzero? #f)             =>  error

  (fxzero? (expt 100 100)) =>  error

  (fxzero? 0)              =>  #t

  (fxzero? 1)              =>  #f

STklos procedure

(fxpositive? obj) 

(fxnegative? obj) 

fxpositive? returns #t if obj is a positive fixnum and returns #f if it is a non-positive fixnum.

fxnegative? can be used to test if a fixnum is negative.

  (fxpositive? #f)             =>  error

  (fxpositive? (expt 100 100)) =>  error

  (fxpositive? 0)              =>  #f

  (fxpositive? 1)              =>  #t

  (fxpositive? -1)             =>  #f

  (fxnegative? 0)              =>  #f

  (fxnegative? 1)              =>  #f



  (fxnegative? -1)             =>  #t

STklos procedure

(fxodd? obj) 

fxodd? returns #t if obj is a odd fixnum and returns #f if it is an even fixnum.

  (fxodd? #f)             =>  error

  (fxodd? (expt 100 100)) =>  error

  (fxodd? 0)              =>  #f

  (fxodd? 1)              =>  #t

  (fxodd? 4)              =>  #f

  (fxeven? 0)             =>  #t

  (fxeven? 1)             =>  #f

  (fxeven? 4)             =>  #t

STklos procedure

(fx+ fx1 fx2) 

(fx- fx1 fx2) 

(fx* fx1 fx2) 

(fxquotient fx1 fx2) 

(fxremainder fx1 fx2) 

(fxmodulo fx1 fx2) 

(fxabs fx) 

(fxneg fx) 

These procedures compute (respectively) the sum, the difference, the product, the quotient and the

remainder and modulo of the fixnums fx1 and fx2. The call of fx- with one parameter fx computes

the opposite of fx, and is equivalent in a call of fxneg with this parameter. fxabs computes the

absolute value of fx.

STklos procedure

(fxsquare fx1) 

(fxsqrt fx1) 

These procedures compute (respectively) the square and the square root of the fixnum fx1. fxsqrt

id semantically equivalent to exact-integer-sqrt (not sqrt), so that (fxsqrt n) returns two values a, b,

such that a*a+b=n.



  (fxsqrt #f)             =>  error

  (fxsqrt (expt 100 100)) =>  error

  (fxsqrt -1)             =>  error

  (fxsqrt 0)              =>  0, 0

  (fxsqrt 1)              =>  1, 0

  (fxsqrt 6)              =>  2, 2

STklos procedure

(fxmax fx1 fx2 …) 

(fxmin fx1 fx2 …) 

These procedures return the maximum or minimum of their fixnum arguments.

(fxmax 3 4)              =>  4

(fxmax 3.9 4)            =>  error

(fxmax)                  =>  error

(fxmax 2 -1 3)           =>  3

STklos procedure

(fx<? fx1 fx2 …) 

(fx⇐? fx1 fx2 …) 

(fx>? fx1 fx2 …) 

(fx>=? fx1 fx2 …) 

(fx=? fx1 fx2 …) 

These are SRFI-143 procedures that compare the fixnums fx1, fx2, and so on. fx<? and fx>? return

#t if the arguments are in strictly increasing/decreasing order; fx⇐? and fx>=? do the same, but

admit equal neighbors; fx=? returns #t if the arguments are all equal.

STklos procedure

(fxnot fx1) 

(fxand fx …) 

(fxior fx …) 

(fxxor fx …) 

These procedures are specified in SRFI-143, and they return (respectively) the bitwise not, and,

inclusive or and exclusive or of their arguments, which must be fixnums.



(fxnot 1)              => -2

(fxnot 0)              => -1

(fxand #x1010 #x1011)  => 4112  ; = #x1010

(fxior #x1010 #x1011)  => 4113  ; = #x1011

(fxxor #x1010 #x1011)  => 1     ; = #x0001

STklos procedure

(fxarithmetic-shift-right fx count) 

(fxarithmetic-shift-left fx count) 

(fxarithmetic-shift fx count) 

These procedures are specified in SRFI-143, and they perform bitwise right-shift, left-shft and shift

with arbitrary direction on fixnums. The strictly left and right shifts are more efficient.

(fxarithmetic-shift-right #b100110 3) =>   4 ; = #b100

(fxarithmetic-shift-left  #b100110 3) => 304 ; = #b100110000

(fxarithmetic-shift #b101 2)          => 20  ; = #b10100

(fxarithmetic-shift #b101 -2)         =>  1  ; =#b1

STklos procedure

(fxlength fx) 

This is a SRFI-143 procedure that returns the length of the fixnum in bits (that is, the number of bits

necessary to represent the number).

(fxlength #b101)          =>  3

(fxlength #b1101)         =>  4

(fxlength #b0101)         =>  3

STklos procedure

(fxif mask fx1 fx2) 

This is a SRFI-143 procedure that merge the fixnum bitstrings fx1 and fx2, with bitstring mask

determining from which string to take each bit. That is, if the kth bit of mask is 1, then the kth bit of

the result is the kth bit of fx1, otherwise the kth bit of fx2.



(fxif 3 1 8)                            => 9

(fxif 3 8 1)                            => 0

(fxif 1 1 2)                            => 3

(fxif #b00111100 #b11110000 #b00001111) => #b00110011

STklos procedure

(fxbit-set? index fx) 

This is a SRFI-143 procedure that returns #t if the index-th bit of fx.

(fxbit-set? 1 3)          => #t

(fxbit-set? 2 7)          => #t

(fxbit-set? 3 6)          => #f

(fxbit-set? 5 #b00111100) => #t

STklos procedure

(fxcopy-bit index fx value) 

This is a SRFI-143 procedure that sets the index-th bit if fx to one if value is #t, and to zero if value is

#f.

(fxcopy-bit 2 3 #t)          =>  7

(fxcopy-bit 2 7 #f)          =>  3

(fxcopy-bit 5 #b00111100 #f) => 28 ; = #b00011100

STklos procedure

(fxbit-count fx1) 

This is a SRFI-143 procedure that returns the quantity of bits equal to one in the fixnum fx (that is,

computes its Hamming weight).

(fxbit-count 8)                         => 1

(fxbit-count 3)                         => 2

(fxbit-count 7)                         => 3



(fxbit-count #b00111010)                => 4

STklos procedure

(fxfirst-set-bit fx1) 

This is a SRFI-143 procedure that returns the index of the first (smallest index) 1 bit in bitstring fx.

Returns -1 if fx contains no 1 bits (i.e., if fx is zero).

(fxfirst-set-bit  8)                         => 3

(fxfirst-set-bit  3)                         => 0

(fxfirst-set-bit  7)                         => 0

(fxfirst-set-bit  #b10110000)                => 4

STklos procedure

(fxbit-field fx1 start end) 

This is a SRFI-143 procedure that extracts a bit field from the fixnum fx1. The bit field is the

sequence of bits between start (including) and end (excluding)

(fxbit-field  #b10110000 3 5)  => 6 ; = #b110

STklos procedure

(fxbit-field-rotate fx) 

This is a SRFI-143 procedure that returns fx with the field cyclically permuted by count bits towards

high-order.

(fxbit-field-rotate #b101011100 -2 1 5)     => 342  = #b101010110

(fxbit-field-rotate #b101011011110 -3 2 10) => 3034 = #b101111011010

(fxbit-field-rotate #b101011011110 3 2 10)  => 2806 = #b101011110110

STklos procedure



(fxbit-field-reverse fx) 

This is a SRFI-143 procedure that returns fx with the order of the bits in the field reversed.

(fxbit-field-reverse #b101011100 1 5)     => #b101001110

(fxbit-field-reverse #b101011011110 2 10) => #b101110110110

STklos procedure

(fx+/carry i j k) 

Returns two values: i`j`k, and carry: it is the value of the computation

(let*-values (((s) (+ i j k))

              ((q r) (balanced/ s (expt 2 fx-width))))

  (values r q))

STklos procedure

(fx-/carry i j k) 

Returns two values: i-j-k, and carry: it is the value of the computation

(let*-values (((s) (- i j k))

              ((q r) (balanced/ s (expt 2 fx-width))))

  (values r q))

STklos procedure

(fx*/carry i j k) 

Returns two values: i*j+k, and carry: it is the value of the computation

(let*-values (((s) (+ (* i j) k))

              ((q r) (balanced/ s (expt 2 fx-width))))

  (values r q))



4.3. Booleans

Of all the standard Scheme values, only #f counts as false in conditional expressions. Except for #f,

all standard Scheme values, including #t, pairs, the empty list, symbols, numbers, strings, vectors,

and procedures, count as true.

Boolean constants evaluate to themselves, so they do not need to be quoted in programs.

R
5
RS procedure

(not obj) 

Not returns #t if obj is false, and returns #f otherwise.

  (not #t)         =>  #f

  (not 3)          =>  #f

  (not (list 3))   =>  #f

  (not #f)         =>  #t

  (not '())        =>  #f

  (not (list))     =>  #f

  (not 'nil)       =>  #f

R
5
RS procedure

(boolean? obj) 

Boolean? returns #t if obj is either #t or #f and returns #f otherwise.

  (boolean? #f)         =>  #t

  (boolean? 0)          =>  #f

  (boolean? '())        =>  #f

R
5
RS procedure

(boolean=? boolean1 boolean2 …) 

Returns #t if all the arguments are booleans and all are #t or all are #f.



4.4. Pairs and lists

R
5
RS procedure

(pair? obj) 

Pair? returns #t if obj is a pair, and otherwise returns #f.

R
5
RS procedure

(cons obj1 obj2) 

Returns a newly allocated pair whose car is obj1 and whose cdr is obj2. The pair is guaranteed to be

different (in the sense of eqv?) from every existing object.

    (cons 'a '())           =>  (a)

    (cons '(a) '(b c d))    =>  ((a) b c d)

    (cons "a" '(b c))       =>  ("a" b c)

    (cons 'a 3)             =>  (a . 3)

    (cons '(a b) 'c)        =>  ((a b) . c)

R
5
RS procedure

(car pair) 

Returns the contents of the car field of pair. Note that it is an error to take the car of the empty list.

    (car '(a b c))          =>  a

    (car '((a) b c d))      =>  (a)

    (car '(1 . 2))          =>  1

    (car '())               =>  error

R
5
RS procedure

(cdr pair) 

Returns the contents of the cdr field of pair. Note that it is an error to take the cdr of the empty list.



    (cdr '((a) b c d))      =>  (b c d)

    (cdr '(1 . 2))          =>  2

    (cdr '())               =>  error

R
5
RS procedure

(set-car! pair obj) 

Stores obj in the car field of pair. The value returned by set-car! is void.

   (define (f) (list 'not-a-constant-list))

   (define (g) '(constant-list))

   (set-car! (f) 3)

   (set-car! (g) 3)             =>  error

R
5
RS procedure

(set-cdr! pair obj) 

Stores obj in the cdr field of pair. The value returned by set-cdr! is void.

R
5
RS procedure

(caar pair) 

(cadr pair) 

… 

(cdddar pair) 

(cddddr pair) 

These procedures are compositions of car and cdr, where for example caddr could be defined by

   (define caddr (lambda (x) (car (cdr (cdr x)))))

Arbitrary compositions, up to four deep, are provided. There are twenty-eight of these procedures

in all.

R
5
RS procedure



(null? obj) 

Returns #t if obj is the empty list, otherwise returns #f.

STklos procedure

(pair-mutable? obj) 

Returns #t if obj is a mutable pair, otherwise returns #f.

(pair-mutable? '(1 . 2))    => #f

(pair-mutable? (cons 1 2))  => #t

(pair-mutable? 12)          => #f

R
5
RS procedure

(list? obj) 

Returns #t if obj is a list, otherwise returns #f. By definition, all lists have finite length and are

terminated by the empty list.

   (list? '(a b c))     =>  #t

   (list? '())          =>  #t

   (list? '(a . b))     =>  #f

   (let ((x (list 'a)))

     (set-cdr! x x)

     (list? x))         =>  #f

STklos procedure

(improper-list? obj) 

Returns false if and only if obj is an improper list.

(improper-list? 2)            => #f

(improper-list? '())          => #f

(improper-list? '(1 2 3))     => #f

(improper-list? '(1 2 . 3))   => #t



(improper-list? (cons 'a 'b)) => #t

(improper-list? (list 1 2))   => #f

(improper-list? #void)        => #f

R
7
RS procedure

(make-list k) 

(make-list k fill) 

Returns a newly allocated list of k elements. If a second argument is given, then each element is

initialized to fill . Otherwise the initial contents of each element is unspecified.

R
5
RS procedure

(list obj …) 

Returns a newly allocated list of its arguments.

   (list 'a (+ 3 4) 'c)            =>  (a 7 c)

   (list)                          =>  ()

STklos procedure

(list* obj …) 

list* is like list except that the last argument to list* is used as the ,(emph "cdr") of the last pair

constructed.

   (list* 1 2 3)        => (1 2 . 3)

   (list* 1 2 3 '(4 5)) => (1 2 3 4 5)

   (list*)              => ()

R
5
RS procedure

(length list) 

Returns the length of list.



   (length '(a b c))               =>  3

   (length '(a (b) (c d e)))       =>  3

   (length '())                    =>  0

R
5
RS procedure

(append list …) 

Returns a list consisting of the elements of the first list followed by the elements of the other lists.

   (append '(x) '(y))              =>  (x y)

   (append '(a) '(b c d))          =>  (a b c d)

   (append '(a (b)) '((c)))        =>  (a (b) (c))

The resulting list is always newly allocated, except that it shares structure with the last list

argument. The last argument may actually be any object; an improper list results if the last

argument is not a proper list.

   (append '(a b) '(c . d))        =>  (a b c . d)

   (append '() 'a)                 =>  a

STklos procedure

(append! list …) 

Returns a list consisting of the elements of the first list followed by the elements of the other lists.

Contrarily to append, the parameter lists (except the last one) are physically modified: their last pair

is changed to the value of the next list in the append! formal parameter list.

(let* ((l1 (list 1 2))

       (l2 (list 3))

       (l3 (list 4 5))

       (l4 (append! l1 l2 l3)))

  (list l1 l2 l3 l4))  => ((1 2 3 4 5) (3 4 5) (4 5) (1 2 3 4 5))

An error is signaled if one of the given lists is a constant list.

R
5
RS procedure



(reverse list) 

Returns a newly allocated list consisting of the elements of list in reverse order.

   (reverse '(a b c))              =>  (c b a)

   (reverse '(a (b c) d (e (f))))  =>  ((e (f)) d (b c) a)

STklos procedure

(reverse! list) 

Returns a list consisting of the elements of list in reverse order. Contrarily to reverse, the returned

value is not newly allocated but computed "in place".

(let ((l '(a b c)))

  (list (reverse! l) l))        =>  ((c b a) (a))

(reverse! '(a constant list))   =>  error

R
5
RS procedure

(list-tail list k) 

Returns the sublist of list obtained by omitting the first k elements. It is an error if list has fewer

than k elements. List-tail could be defined by

   (define list-tail

      (lambda (x k)

         (if (zero? k)

            x

            (list-tail (cdr x) (- k 1)))))

STklos procedure

(last-pair list) 

Returns the last pair of list.



(last-pair '(1 2 3))   => (3)

(last-pair '(1 2 . 3)) => (2 . 3)

R
5
RS procedure

(list-ref list k) 

Returns the k`th element of `list. (This is the same as the car of (list-tail list k).) It is an error

if list has fewer than k elements.

   (list-ref '(a b c d) 2)                 =>  c

   (list-ref '(a b c d)

             (inexact->exact (round 1.8))) =>  c

R
7
RS procedure

(list-set! list k obj) 

The list-set! procedure stores obj in element k of list. It is an error if k is not a valid index of list.

(let ((ls (list 'one 'two 'five!)))

   (list-set! ls 2 'three)

   ls)                              => (one two three)

(list-set! '(0 1 2) 1 "oops")       => error (constant list)

R
5
RS / R

7
RS procedure

(memq obj list) 

(memv obj list) 

(member obj list) 

(member obj list compare) 

These procedures return the first sublist of list whose car is obj, where the sublists of list are the

non-empty lists returned by (list-tail list k) for k less than the length of list. If obj does not

occur in list, then #f (not the empty list) is returned. Memq uses eq? to compare obj with the

elements of list, while memv uses eqv? and member uses compare, if given, and equal? otherwise.

   (memq 'a '(a b c))              =>  (a b c)



   (memq 'b '(a b c))              =>  (b c)

   (memq 'a '(b c d))              =>  #f

   (memq (list 'a) '(b (a) c))     =>  #f

   (member (list 'a)

           '(b (a) c))             =>  ((a) c)

   (member "B"

           ’("a" "b" "c")

           string-ci=?)            => ("b" "c")

   (memv 101 '(100 101 102))       =>  (101 102)

 As in R
7
RS, the member function accepts also a comparison function.

R
5
RS / R

7
RS procedure

(assq obj alist) 

(assv obj alist) 

(assoc obj alist) 

(assoc obj alist compare) 

Alist (for "association list") must be a list of pairs. These procedures find the first pair in alist

whose car field is obj, and returns that pair. If no pair in alist has obj as its car, then #f (not the

empty list) is returned. Assq uses eq? to compare obj with the car fields of the pairs in alist, while

assv uses eqv? and assoc uses equal?.

   (define e '((a 1) (b 2) (c 3)))

   (assq 'a e)                =>  (a 1)

   (assq 'b e)                =>  (b 2)

   (assq 'd e)                =>  #f

   (assq (list 'a) '(((a)) ((b)) ((c))))

                              =>  #f

   (assoc (list 'a) '(((a)) ((b)) ((c))))

                              => ((a))

   (assoc 2.0 '((1 1) (2 4) (3 9)) =)

                              => (2 4)

   (assv 5 '((2 3) (5 7) (11 13)))

                              =>  (5 7)


Although they are ordinarily used as predicates, memq, memv, member, assq, assv, and

assoc do not have question marks in their names because they return useful

values rather than just #t or #f.

 As in R
7
RS, the assoc function accepts also a comparison function.



R
7
RS procedure

(list-copy obj) 

list-copy recursively copies trees of pairs. If obj is not a pair, it is returned; otherwise the result is a

new pair whose car and cdr are obtained by calling list-copy on the car and cdr of obj, respectively.

STklos procedure

(filter pred list) 

(filter! pred list) 

Filter returns all the elements of list that satisfy predicate pred. The list is not disordered:

elements that appear in the result list occur in the same order as they occur in the argument list.

Filter! does the same job as filter by physically modifying its list argument

(filter even? '(0 7 8 8 43 -4)) => (0 8 8 -4)

(let* ((l1 (list 0 7 8 8 43 -4))

       (l2 (filter! even? l1)))

   (list l1 l2))                => ((0 8 8 -4) (0 8 8 -4))

An error is signaled if list is a constant list.

STklos procedure

(remove pred list) 

Remove returns list without the elements that satisfy predicate pred:

The list is not disordered — elements that appear in the result list occur in the same order as they

occur in the argument list. Remove! does the same job than remove by physically modifying its list

argument

(remove even? '(0 7 8 8 43 -4)) => (7 43)

STklos procedure

(delete x list [=]) 

(delete! x list [=]) 



Delete uses the comparison procedure =, which defaults to equal?, to find all elements of list that

are equal to x, and deletes them from list. The dynamic order in which the various applications of

= are made is not specified.

The list is not disordered — elements that appear in the result list occur in the same order as they

occur in the argument list.

The comparison procedure is used in this way: (= x ei). That is, x is always the first argument, and

a list element is always the second argument. The comparison procedure will be used to compare

each element of list exactly once; the order in which it is applied to the various ei is not specified.

Thus, one can reliably remove all the numbers greater than five from a list with

(delete 5 list <)

delete! is the linear-update variant of delete. It is allowed, but not required, to alter the cons cells

in its argument list to construct the result.

STklos procedure

(push! place val) 

(pop! place) 

These macros push and pop an element into/from a list, so as to use it as a stack. The result of the

push! form is undefined, whereas the result of pop! is the result of the evaluation of place.

(define S (list 20 30 40))

(push! S 10)

S                         => (10 20 30 40)

(pop! S)                  => 10

S                         => (20 30 40)

Since STklos permits generalized set!, place may be a list of the form (proc a1 a2 …). In this case,

push! calls the setter of proc.

(define v (vector (list 1 2) (list 3 4)))

(push! (vector-ref v 0) 17)

(pop! (vector-ref v 1))                       => 3

v                                             => #((17 1 2) (4))

4.5. Symbols

The STklos reader can read symbols whose names contain special characters or letters in the non

standard case. When a symbol is read, the parts enclosed in bars | will be entered verbatim into the



symbol’s name. The | characters are not part of the symbol; they only serve to delimit the sequence

of characters that must be entered "as is". In order to maintain read-write invariance, symbols

containing such sequences of special characters will be written between a pair of |.

In addition, any character can be used within an identifier when specified via an inline hex escape .

For example, the identifier Hx65;llo is the same as the identifier Hello, and, if the UTF-8 encoding is

used, the identifier x3BB; is the same as the identifier λ.

'|a|                  => a

(string->symbol "a")  => |A|

(symbol->string '|A|) => "A"

'|a  b|               => |a  b|

'a|B|c                => |aBc|

(write '|FoO|)        |- |FoO|

(display '|FoO|)      |- FoO

R
5
RS procedure

(symbol? obj) 

Returns #t if obj is a symbol, otherwise returns #f.

   (symbol? 'foo)          =>  #t

   (symbol? (car '(a b)))  =>  #t

   (symbol? "bar")         =>  #f

   (symbol? 'nil)          =>  #t

   (symbol? '())           =>  #f

   (symbol? #f)            =>  #f

   (symbol? :key)          =>  #f

R
5
RS procedure

(symbol=? symbol1 symbol2 …) 

Returns #t if all the arguments are symbols and all have the same name in the sense of string=?.

R
5
RS procedure

(symbol→string string) 



Returns the name of symbol as a string. If the symbol was part of an object returned as the value of a

literal expression or by a call to the read procedure, and its name contains alphabetic characters,

then the string returned will contain characters in the implementation’s preferred standard

case — STklos prefers lower case. If the symbol was returned by string→symbol, the case of

characters in the string returned will be the same as the case in the string that was passed to

string→symbol. It is an error to apply mutation procedures like string-set! to strings returned by

this procedure.

   (symbol->string 'flying-fish)  =>  "flying-fish"

   (symbol->string 'Martin)       =>  "martin"

   (symbol->string (string->symbol "Malvina"))

                                  =>  "Malvina"

R
5
RS procedure

(string→symbol string) 

Returns the symbol whose name is string. This procedure can create symbols with names

containing special characters or letters in the non-standard case, but it is usually a bad idea to

create such symbols because in some implementations of Scheme they cannot be read as

themselves.

   (string->symbol "mISSISSIppi")                    =>  |mISSISSIppi|

   (eq? 'bitBlt (string->symbol "bitBlt"))           =>  #f

   (eq? 'JollyWog

        (string->symbol

          (symbol->string 'JollyWog)))               =>  #t

   (string=? "K. Harper, M.D."

             (symbol->string

               (string->symbol "K. Harper, M.D.")))  =>  #t


The expression (eq? 'mISSISSIppi 'mississippi) returns #f if STklos is running in

case-sensitive mode (default), whereas it returns #t otherwise.

STklos procedure

(string→unterned-symbol string) 

Returns the symbol whose print name is made from the characters of string. This symbol is

guaranteed to be unique (i.e. not eq? to any other symbol):



(let ((ua (string->uninterned-symbol "a")))

  (list (eq? 'a ua)

        (eqv? 'a ua)

        (eq? ua (string->uninterned-symbol "a"))

        (eqv? ua (string->uninterned-symbol "a"))))

          => (#f #t #f #t)

STklos procedure

(gensym) 

(gensym prefix) 

Creates a new symbol. The print name of the generated symbol consists of a prefix (which defaults

to "G") followed by the decimal representation of a number. If prefix is specified, it must be either a

string or a symbol.

(gensym)        => |G100|

(gensym "foo-") => foo-101

(gensym 'foo-)  => foo-102

4.6. Characters

The following table gives the list of allowed character names with their ASCII eqivalent expressed

in octal. Some chracaters have an alternate name which is also shown in this table.

name value alt. name name value alt. name

nul 000 null soh 001

stx 002 etx 003

eot 004 enq 005

ack 006 bel 007 alarm

bs 010 backspace ht 011 tab

nl 012 newline vt 013

np 014 page cr 015 return

so 016 si 017

dle 020 dc1 021

dc2 022 dc3 023

dc4 024 nak 025

syn 026 etb 027



name value alt. name name value alt. name

can 030 em 031

sub 032 esc 033 escape

fs 034 gs 035

rs 036 us 037

sp 040 space del 177 delete

STklos supports the complete Unicode character set, if UTF-8 encoding is used. Hereafter, are some

examples of characters:

#A                => uppercase A

#a                => lowercase a

#x41              => the U+0041 character (uppercase A)

#x03bb            => λ

R
5
RS procedure

(char? obj) 

Returns #t if obj is a character, otherwise returns #f.

R
5
RS procedure

(char=? char1 char2 …) 

(char<? char1 char2 …) 

(char>? char1 char2 …) 

(char⇐? char1 char2 …) 

(char>=? char1 char2 …) 

These procedures impose a total ordering on the set of characters. It is guaranteed that under this

ordering:

• The upper case characters are in order.

• The lower case characters are in order.

• The digits are in order.

• Either all the digits precede all the upper case letters, or vice versa.

• Either all the digits precede all the lower case letters, or vice versa. )



R
5
RS procedure

(char-ci=? char1 char2 …) 

(char-ci<? char1 char2 …) 

(char-ci>? char1 char2 …) 

(char-ci⇐? char1 char2 …) 

(char-ci>=? char1 char2 …) 

These procedures are similar to char=? et cetera, but they treat upper case and lower case letters as

the same. For example, (char-ci=? #A #a) returns #t.

R
5
RS procedure

(char-alphabetic? char) 

(char-numeric? char) 

(char-whitespace? char) 

(char-upper-case? letter) 

(char-lower-case? letter) 

These procedures return #t if their arguments are alphabetic, numeric, whitespace, upper case, or

lower case characters, respectively, otherwise they return #f. The following remarks, which are

specific to the ASCII character set, are intended only as a guide: The alphabetic characters are the

52 upper and lower case letters. The numeric characters are the ten decimal digits. The whitespace

characters are space, tab, line feed, form feed, and carriage return.

R
5
RS procedure

(char→integer char) 

(integer→char n) 

Given a character, char→integer returns an exact integer representation of the character. Given an

exact integer that is the image of a character under char→integer, integer→char returns that

character. These procedures implement order-preserving isomorphisms between the set of

characters under the char⇐? ordering and some subset of the integers under the ⇐ ordering. That

is, if

   (char<=? a b) => #t  and  (<= x y) => #t

and x and y are in the domain of integer→char, then

   (<= (char->integer a)

       (char->integer b))         =>  #t



  (char<=? (integer->char x)

           (integer->char y))     =>  #t

integer→char accepts an exact number between 0 and #xD7FFF or between #xE000 and #x10FFFF, if

UTF8 encoding is used. Otherwise, it accepts a number between 0 and #xFF.

R
5
RS procedure

(char-upcase char) 

(char-downcase char) 

These procedures return a character char2 such that (char-ci=? char char2). In addition, if char is

alphabetic, then the result of char-upcase is upper case and the result of char-downcase is lower case.

STklos procedure

(char-foldcase char) 

This procedure applies the Unicode simple case folding algorithm and returns the result. Note that

language-sensitive folding is not used. If the argument is an uppercase letter, the result will be

either a lowercase letter or the same as the argument if the lowercase letter does not exist.

R
7
RS procedure

(digit-value char) 

This procedure returns the numeric value (0 to 9) of its argument if it is a numeric digit (that is, if

char-numeric? returns #t), or #f on any other character.

(digit-value

(digit-value #3)        => 3

(digit-value #x0664)    => 4

(digit-value #x0AE6)    => 0

(digit-value #x0EA6)    => #f

4.7. Strings

STklos string constants allow the insertion of arbitrary characters by encoding them as escape

sequences. An escape sequence is introduced by a backslash "$backslash$". The valid escape

sequences are shown in the following table.



Sequence Character inserted

a Alarm

b Backspace

e Escape

n Newline

t Horizontal Tab

r Carriage Return

" doublequote U+0022

\ backslash U+005C

0abc ASCII character with octal value abc

x<hexa value>; ASCII character with given hexadecimal value

<intraline whitespace><newline><intraline

whitespace>

None (permits to enter a string on several lines)

<other> <other>

For instance, the string

"ab040x20;cnd

         e"

is the string consisting of the characters #a, #b, #space, #space, #c, #newline, #d and #e.

Notes:

• Using octal code is limited to characters in the range 0 to #xFF. It is then not convenient to enter

Unicode characters. This form is deprecated should not be used anymore.

• A line ending which is preceded by <intraline whitespace> expands to nothing (along with any

trailing <intraline whitespace>), and can be used to indent strings for improved legibility.

R
5
RS procedure

(string? obj) 

Returns #t if obj is a string, otherwise returns #f.

R
5
RS procedure

(make-string k) 



(make-string k char) 

Make-string returns a newly allocated string of length k. If char is given, then all elements of the

string are initialized to char, otherwise the contents of the string are unspecified.

R
5
RS procedure

(string char …) 

Returns a newly allocated string composed of the arguments.

R
5
RS procedure

(string-length string) 

Returns the number of characters in the given string.

R
5
RS procedure

(string-ref string k) 

String-ref returns character k of string using zero-origin indexing (k must be a valid index of

string).

R
5
RS procedure

(string-set! string k char) 

String-set! stores char in element k of string and returns void (k must be a valid index of string).

(define (f) (make-string 3 #*))

(define (g) "***")

(string-set! (f) 0 #?)  =>  void

(string-set! (g) 0 #?)  =>  error

(string-set! (symbol->string 'immutable) 0 #?)

                         =>  error



R
5
RS / R

7
RS procedure

(string=? string1 string2 …) 

(string-ci=? string1 string2 …) 

Returns #t if all the strings are the same length and contain the same characters in the same

positions, otherwise returns #f. String-ci=? treats upper and lower case letters as though they were

the same character, but string=? treats upper and lower case as distinct characters.

 R
5
RS version of these functions accept only two arguments.

R
5
RS / R

7
RS procedure

(string<? string1 string2 …) 

(string>? string1 string2 …) 

(string⇐? string1 string2 …) 

(string>=? string1 string2 …) 

(string-ci<? string1 string2 …) 

(string-ci>? string1 string2 …) 

(string-ci⇐? string1 string2 …) 

(string-ci>=? string1 string2) 

These procedures are the lexicographic extensions to strings of the corresponding orderings on

characters. For example, string<? is the lexicographic ordering on strings induced by the ordering

char<? on characters. If two strings differ in length but are the same up to the length of the shorter

string, the shorter string is considered to be lexicographically less than the longer string.

 R
5
RS version of these functions accept only two arguments.

R
5
RS procedure

(substring string start end) 

String must be a string, and start and end must be exact integers satisfying

0 <= start <= end <= (string-length string).

Substring returns a newly allocated string formed from the characters of string beginning with

index start (inclusive) and ending with index end (exclusive).

R
5
RS procedure



(string-append string …) 

Returns a newly allocated string whose characters form the concatenation of the given strings.

R
5
RS / R

7
RS procedure

(string→list string) 

(string→list string start) 

(string→list string start end) 

(list→string list) 

String→list returns a newly allocated list of the characters of string between start and end.

List→string returns a newly allocated string formed from the characters in the list list, which must

be a list of characters. String→list and list→string are inverses so far as equal? is concerned.

 The R
5
RS version of string→list accepts only one parameter.

R
5
RS / R

7
RS procedure

(string-copy string) 

(string-copy string start) 

(string-copy string start stop) 

Returns a newly allocated copy of the part of the given string between start and stop.

 The R
5
RS version of string-copy accepts only one argument.

R
7
RS procedure

(string-copy! to at from) 

(string-copy! to at from start) 

(string-copy! to at from start end) 

Copies the characters of string from between start and end to string to, starting at at. The order in

which characters are copied is unspecified, except that if the source and destination overlap,

copying takes place as if the source is first copied into a temporary string and then into the

destination. This can be achieved without allocating storage by making sure to copy in the correct

direction in such circumstances.

It is an error if at is less than zero or greater than the length of to. It is also an error if (- (string-

length to) at) is less than (- end start).



STklos procedure

(string-split str) 

(string-split str delimiters) 

Parses string and returns a list of tokens ended by a character of the delimiters string. If delimiters

is omitted, it defaults to a string containing a space, a tabulation and a newline characters.

(string-split "/usr/local/bin" "/")

                       => ("usr" "local" "bin")

(string-split "once   upon a time")

                       => ("once" "upon" "a" "time")

STklos procedure

(string-position str1 str2) 

Returns the (first) index where str1 is a substring of str2 if it exists; otherwise returns #f.

(string-position "ca" "abracadabra") =>  4

(string-position "ba" "abracadabra") =>  #f


This function was also called string-index. This name is deprecated since it

conficts with the string-index defined in SRFI-13.

STklos procedure

(string-find? str1 str2) 

Returns #t if str1 appears somewhere in str2; otherwise returns #f.

R
7
RS procedure

(string-fill! string char) 

(string-fill! string char start) 

(string-fill! string char start end) 



Stores char in every element of the given string between start and end.

 The R
5
RS version of string-fill! accepts only one argument.

STklos procedure

(string-blit! s1 s2 offset) 

This function places the characters of string s2 in the string s1 starting at position offset. The result

of string-blit! may modify the string s1. Note that the characters of s2 can be written after the end

of s1 (in which case a new string is allocated).

(string-blit! (make-string 6 #X) "abc" 2)

              => "XXabcX"

(string-blit! (make-string 10 #X) "abc" 5)

              => "XXXXXabcXX"

(string-blit! (make-string 6 #X) "a" 10)

              => "XXXXXX0000a"

STklos procedure

(string-mutable? obj) 

Returns #t if obj is a mutable string, otherwise returns #f.

(string-mutable? "abc")                => #f

(string-mutable? (string-copy "abc"))  => #t

(string-mutable? (string #a #b #c)) => #t

(string-mutable? 12)                   => #f

The following string primitives are compatible with SRFI-13 (String Library) and their

documentation comes from the SRFI document.

Notes:

• The string SRFI is supported by STklos. The function listed below just don’t need to load the full

SRFI to be used

• The functions string-upcase, string-downcase and string-foldcase are also defined in R
7
RS.

R
7
RS procedure

http://srfi.schemers.org/srfi-13/srfi-13.html


(string-downcase str) 

(string-downcase str start) 

(string-downcase str start end) 

Returns a string in which the upper case letters of string str between the start and end indices have

been replaced by their lower case equivalent. If start is omited, it defaults to 0. If end is omited, it

defaults to the length of str.

(string-downcase "Foo BAR")        => "foo bar"

(string-downcase "Foo BAR" 4)      => "bar"

(string-downcase "Foo BAR" 4 6)    => "ba"

 In R
7
RS, string-downcase accepts only one argument.

STklos procedure

(string-downcase! str) 

(string-downcase! str start) 

(string-downcase! str start end) 

This is the in-place side-effecting variant of string-downcase.

(string-downcase! (string-copy "Foo BAR") 4)    => "Foo bar"

(string-downcase! (string-copy "Foo BAR") 4 6)  => "Foo baR"

R
7
RS procedure

(string-upcase str) 

(string-upcase str start) 

(string-upcase str start end) 

Returns a string in which the lower case letters of string str between the start and end indices have

been replaced by their upper case equivalent. If start is omited, it defaults to 0. If end is omited, it

defaults to the length of str.

 In R
7
RS, string-upcase accepts only one argument.

STklos procedure



(string-upcase! str) 

(string-upcase! str start) 

(string-upcase! str start end) 

This is the in-place side-effecting variant of string-upcase.

STklos procedure

(string-titlecase str) 

(string-titlecase str start) 

(string-titlecase str start end) 

This function returns a string. For every character c in the selected range of str, if c is preceded by

a cased character, it is downcased; otherwise it is titlecased. If start is omited, it defaults to 0. If end

is omited, it defaults to the length of str. Note that if a start index is specified, then the character

preceding s[start] has no effect on the titlecase decision for character s[start].

(string-titlecase "--capitalize tHIS sentence.")

         =>  "--Capitalize This Sentence."

(string-titlecase "see Spot run. see Nix run.")

         =>  "See Spot Run. See Nix Run."

(string-titlecase "3com makes routers.")

         =>  "3Com Makes Routers."

(string-titlecase "greasy fried chicken" 2)

         => "Easy Fried Chicken"

STklos procedure

(string-titlecase! str) 

(string-titlecase! str start) 

(string-titlecase! str start end) 

This is the in-place side-effecting variant of string-titlecase.

STklos procedure

(string-append! string …) 

Extends string by appending each value (in order) to the end of string. A value can be a character or

a string.



It is guaranteed that string-append! will return the same object that was passed to it as first

argument, whose size may be larger.

 This function is defined in SRFI-118.

STklos procedure

(string-replace! dst dst-start dst-end src) 

(string-replace! dst dst-start dst-end src src-start) 

(string-replace! dst dst-start dst-end src src-start src-end) 

Replaces the characters of the variable-size string dst (between dst-start and dst-end) with the

characters of the string src (between src-start and src-end). The number of characters from src may

be different from the number replaced in dst, so the string may grow or contract. The special case

where dst-start is equal to dst-end corresponds to insertion; the case where src-start is equal to src-

end corresponds to deletion. The order in which characters are copied is unspecified, except that if

the source and destination overlap, copying takes place as if the source is first copied into a

temporary string and then into the destination. Returns string, appended with the characters form

the concatenation of the given arguments, which can be either strings or characters.

It is guaranteed that string-replace! will return the same object that was passed to it as first

argument, whose size may be larger.

 This function is defined in SRFI-118.

R
7
RS procedure

(string-foldcase str) 

(string-foldcase str start) 

(string-foldcase str start end) 

Returns a string in which the Unicode simple case-folding algorithm has been applied on str

between the start and end indices. If start is omited, it defaults to 0. If end is omited, it defaults to

the length of str.

 In R
7
RS, string-foldcase accepts only one argument.

STklos procedure

(string-foldcase! str) 

(string-foldcase! str start) 



(string-foldcase! str start end) 

This is the in-place side-effecting variant of string-foldcase.

4.8. Vectors

Vectors are heterogenous structures whose elements are indexed by integers. A vector typically

occupies less space than a list of the same length, and the average time required to access a

randomly chosen element is typically less for the vector than for the list.

The length of a vector is the number of elements that it contains. This number is a non-negative

integer that is fixed when the vector is created. The valid indexes of a vector are the exact non-

negative integers less than the length of the vector. The first element in a vector is indexed by zero,

and the last element is indexed by one less than the length of the vector.

Vectors are written using the notation #(obj …). For example, a vector of length 3 containing the

number zero in element 0, the list (2 2 2 2) in element 1, and the string "Anna" in element 2 can be

written as following:

#(0 (2 2 2 2) "Anna")

 In STklos, vectors constants don’t need to be quoted.

R
5
RS procedure

(vector? obj) 

Returns #t if obj is a vector, otherwise returns #f.

R
5
RS procedure

(make-vector k) 

(make-vector k fill) 

Returns a newly allocated vector of k elements. If a second argument is given, then each element is

initialized to fill. Otherwise, the initial contents of each element is unspecified.

R
5
RS procedure



(vector obj …) 

Returns a newly allocated vector whose elements contain the given arguments. Analogous to list.

(vector 'a 'b 'c)               =>  #(a b c)

R
5
RS procedure

(vector-length vector) 

Returns the number of elements in vector as an exact integer.

R
5
RS procedure

(vector-ref vector k) 

k must be a valid index of vector. Vector-ref returns the contents of element k of vector.

(vector-ref '#(1 1 2 3 5 8 13 21)

            5)                                    =>  8

(vector-ref '#(1 1 2 3 5 8 13 21)

            (let ((i (round (* 2 (acos -1)))))

              (if (inexact? i)

                  (inexact->exact i)

                  i)))                            => 13

R
5
RS procedure

(vector-set! vector k obj) 

k must be a valid index of vector. Vector-set! stores obj in element k of vector. The value returned

by vector-set! is void.

(let ((vec (vector 0 '(2 2 2 2) "Anna")))

  (vector-set! vec 1 '("Sue" "Sue"))

  vec)      =>  #(0 ("Sue" "Sue") "Anna")



(vector-set! '#(0 1 2) 1 "doe")  =>  error  ; constant vector

R
5
RS / R

7
RS procedure

(vector→list vector) 

(vector→list vector start) 

(vector→list vector start end) 

(list→vector list) 

Vector→list returns a newly allocated list of the objects contained in the elements of vector

between start an end. List→vector returns a newly created vector initialized to the elements of the

list list.

In both procedures, order is preserved.

(vector->list '#(dah dah didah))     =>  (dah dah didah)

(vector->list '#(dah dah didah) 1 2) =>  (dah)

(list->vector '(dididit dah))        =>  #(dididit dah)

 The R
5
RS version of vector→list accepts only one parameter.

R
7
RS procedure

(vector→string string) 

(vector→string string start) 

(vector→string string start end) 

(string→vector vector) 

(string→vector vector start) 

(string→vector vector start end) 

The vector→string procedure returns a newly allocated string of the objects contained in the

elements of vector between start and end. It is an error if any element of vector between start and

end is not a character.

The string→vector procedure returns a newly created vector initialized to the elements of string

between start and end.

In both procedures, order is preserved.

(string->vector "ABC")           => #(#A #B #C)

(vector->string #(#1 #2 #3))  => "123"



R
5
RS procedure

(vector-append vector …) 

Returns a newly allocated vector whose elements are the concatenation of the elements of the given

vectors.

(vector-append #(a b c) #(d e f)) => #(a b c d e f)

R
5
RS / R

7
RS procedure

(vector-fill! vector fill) 

(vector-fill! vector fill start) 

(vector-fill! vector fill start end) 

Stores fill in every element of vector between start and end.

 The R
5
RS version of vector-fill! accepts only one parameter.

R
5
RS / R

7
RS procedure

(vector-copy v) 

(vector-copy v start) 

(vector-copy v start stop) 

Return a newly allocated copy of the elements of the given vector between start and end . The

elements of the new vector are the same (in the sense of eqv?) as the elements of the old.

Note that, if v is a constant vector, its copy is not constant.

(define a #(1 8 2 8))         ; a is immutable

(define b (vector-copy a))    ; b is mutable

(vector-set! b 0 3)

b                            => #(3 8 2 8)

(define c (vector-copy b 1 3))

c                            => #(8 2)

R
7
RS procedure

(vector-copy! to at from) 



(vector-copy! to at from start) 

(vector-copy! to at from start end) 

STklos procedure

(vector-resize v size) 

(vector-resize v size fill) 

Returns a copy of v of the given size. If size is greater than the vector size of v, the contents of the

newly allocated vector cells is set to the value of fill. If fill is omitted the content of the new cells

is void.

STklos procedure

(vector-mutable? obj) 

Returns #t if obj is a mutable vector, otherwise returns #f.

(vector-mutable? '#(1 2 a b))            => #f

(vector-mutable? (vector-copy '#(1 2)))  => #t

(vector-mutable? (vector 1 2 3))         => #t

(vector-mutable? 12)                     => #f

STklos procedure

(sort obj predicate) 

Obj must be a list or a vector. Sort returns a copy of obj sorted according to predicate. Predicate

must be a procedure which takes two arguments and returns a true value if the first argument is

strictly ``before'' the second.

(sort '(1 2 -4 12 9 -1 2 3) <)

               => (-4 -1 1 2 2 3 9 12)

(sort '#("one" "two" "three" "four")

      (lambda (x y) (> (string-length x) (string-length y))))

               => '#("three" "four" "one" "two")



4.9. Structures

A structure type is a record data type composing a number of slots. A structure, an instance of a

structure type, is a first-class value that contains a value for each field of the structure type.

Structures can be created with the define-struct high level syntax. However, STklos also offers

some low-level functions to build and access the internals of a structure.

STklos syntax

(define-struct <name> <slot> …) 

Defines a structure type whose name is <name>. Once a structure type is defined, the following

symbols are bound:

• <name> denotes the structure type.

• make-<name> is a procedure which takes 0 to n parameters (if there are n slots defined). Each

parameter is assigned to the corresponding field (in the definition order).

• <name>? is a predicate which returns #t when applied to an instance of the <name> structure type

and #f otherwise

• <name>-<slot> (one for each defined <slot>) to read the content of an instance of the <name>

structure type. Writting the content of a slot can be done using a generalized set!.

(define-struct point x y)

(define p (make-point 1 2))

(point? p)    => #t

(point? 100)  => #f

(point-x p)   => 1

(point-y p)   => 2

(set! (point-x p) 10)

(point-x p)   => 10

STklos procedure

(make-struct-type name parent slots) 

This form which is more general than define-struct permits to define a new structure type whose

name is name. Parent is the structure type from which is the new structure type is a subtype (or #f is

the new structure-type has no super type). Slots is the list of the slot names which constitute the

structure tpe.

When a structure type is s subtype of a previous type, its slots are added to the ones of the super



type.

STklos procedure

(struct-type? obj) 

Returns #t if obj is a structure type, otherwise returns #f.

(let ((type (make-struct-type 'point #f '(x y))))

  (struct-type? type))         => #t

STklos procedure

(struct-type-slots structype) 

Returns the slots of the structure type structype as a list.

(define point  (make-struct-type 'point #f '(x y)))

(define circle (make-struct-type 'circle point '(r)))

(struct-type-slots point)   => (x y)

(struct-type-slots circle)  => (x y r)

STklos procedure

(struct-type-parent structype) 

Returns the super type of the structure type structype, if it exists or #f otherwise.

STklos procedure

(struct-type-name structype) 

Returns the name associated to the structure type structype.

STklos procedure



(struct-type-change-writer! structype proc) 

Change the default writer associated to structures of type structype to the proc procedure. The proc

procedure must accept 2 arguments (the structure to write and the port wher the structure must be

written in that order). The value returned by struct-type-change-writer! is the old writer

associated to structype. To restore the standard structure writer for structype, use the special value

#f.

(define point (make-struct-type 'point #f '(x y)))

(struct-type-change-writer!

  point

  (lambda (s port)

    (let ((type (struct-type s)))

      (format port "{~A" (struct-type-name type))

      ;; display the slots and their value

      (for-each (lambda (x)

       (format port " ~A=~S" x (struct-ref s x)))

     (struct-type-slots type))

      (format port "}"))))

(display (make-struct point 1 2)) |- {point x=1 y=2}

STklos procedure

(make-struct structype expr …) 

Returns a newly allocated instance of the structure type structype, whose slots are initialized to

expr … If fewer expr than the number of instances are given to make-struct, the remaining slots are

inialized with the special void value.

STklos procedure

(struct? obj) 

Returns #t if obj is a structure, otherwise returns #f.

(let* ((type (make-struct-type 'point #f '(x y)))

       (inst (make-struct type 1 2)))

  (struct? inst))         => #t



STklos procedure

(struct-type s) 

Returns the structure type of the s structure

STklos procedure

(struct-ref s slot-name) 

Returns the value associated to slot slot-name of the s structure.

(define point  (make-struct-type 'point #f '(x y)))

(define circle (make-struct-type 'circle point '(r)))

(define p (make-struct point 1 2))

(define c (make-struct circle 10 20 30))

(struct-ref p 'y) => 2

(struct-ref c 'r) => 30

STklos procedure

(struct-set! s slot-name value) 

Stores value in the to slot slot-name of the s structure. The value returned by struct-set! is void.

(define point  (make-struct-type 'point #f '(x y)))

(define p (make-struct point 1 2))

(struct-ref p 'x) => 1

(struct-set! p 'x 0)

(struct-ref p 'x) => 0

STklos procedure

(struct-is-a? s structype) 

Return a boolean that indicates if the structure s is of type structype. Note that if s is an instance of

a subtype of S, it is considered also as an instance of type S.



(define point  (make-struct-type 'point #f '(x y)))

(define circle (make-struct-type 'circle point '(r)))

(define p (make-struct point 1 2))

(define c (make-struct circle 10 20 30))

(struct-is-a? p point)   => #t

(struct-is-a? c point)   => #t

(struct-is-a? p circle)  => #f

(struct-is-a? c circle)  => #t

STklos procedure

(struct→list s) 

Returns the content of structure s as an A-list whose keys are the slots of the structure type of s.

(define point  (make-struct-type 'point #f '(x y)))

(define p (make-struct point 1 2))

(struct->list p) => ((x . 1) (y . 2))

4.10. Bytevectors

Bytevectors represent blocks of binary data. They are fixed-length sequences of bytes, where a byte

is an exact integer in the range (0, 255). A bytevector is typically more space-efficient than a vector

containing the same values.

The length of a bytevector is the number of elements that it contains. This number is a non-negative

integer that is fixed when the bytevector is created. The valid indexes of a bytevector are the exact

non-negative integers less than the length of the bytevector, starting at index zero as with vectors.

Bytevectors are written using the notation #u8(byte …). For example, a bytevector of length 3

containing the byte 0 in element 0, the byte 10 in element 1, and the byte 5 in element 2 can be

written as follows: #u8(0 10 5)

Bytevector constants are self-evaluating, so they do not need to be quoted in programs.

R
7
RS procedure

(bytevector? obj) 

Returns #t if obj is a bytevector and returns #f otherwise.



R
7
RS procedure

(make-bytevector k) 

(make-bytevector k byte) 

Returns a newly allocated bytevector of k bytes. If If byte is given, then all elements of the

bytevector are initialized to byte, otherwise the contents of each element is 0.

(make-bytevector 2 12) => #u8(12 12)

(make-bytevector 3)    => #u8(0 0 0)

R
7
RS procedure

(bytevector byte …) 

Returns a newly allocated bytevector containing its arguments.

(bytevector 1 3 5 1 3 5)   => #u8(1 3 5 1 3 5)

(bytevector)               => #u8()

R
7
RS procedure

(bytevector-length bytevector) 

Returns the length of bytevector in bytes as an exact integer.

R
7
RS procedure

(bytevector-u8-ref bytevector k) 

Returns the byte at index k of bytevector as an exact integer in the range [0..255]. It is an error if k is

not a valid index of bytevector.

(bytevector-u8-ref #u8(1 1 2 3 5 8 13 21) 5)    => 8

STklos procedure



(bytevector-u8-set! bytevector k byte) 

Stores byte as the k th byte of bytevector. It is an error if k is not a valid index of bytevector.

(let ((bv (bytevector 1 2 3 4)))

  (bytevector-u8-set! bv 1 3)

  bv)                             => #u8(1 3 3 4)

R
7
RS procedure

(bytevector-copy bytevector) 

(bytevector-copy bytevector start) 

(bytevector-copy bytevector start end) 

Returns a newly allocated bytevector containing the bytes in bytevector between start and end.

(define a #u8(1 2 3 4 5))

(bytevector-copy a 2 4))       =>  #u8(3 4)

R
7
RS procedure

(bytevector-copy! to at from) 

(bytevector-copy! to at from start) 

(bytevector-copy! to at from start end) 

Copies the bytes of bytevector from between start and end to bytevector to, starting at at. The order

in which bytes are copied is unspecified, except that if the source and destination overlap, copying

takes place as if the source is first copied into a temporary bytevector and then into the destination.

This can be achieved without allocating storage by making sure to copy in the correct direction in

such circumstances.

It is an error if at is less than zero or greater than the length of to. It is also an error if (-

(bytevector-length to) at) is less than (- end start).

(define a (bytevector 1 2 3 4 5))

(define b (bytevector 10 20 30 40 50))

(bytevector-copy! b 1 a 0 2)

b                                  =>  #u8(10 1 2 40 50



R
5
RS procedure

(bytevector-append bytevector …) 

Returns a newly allocated bytevector whose elements are the concatenation of the elements in the

given bytevectors.

(bytevector-append #u8(0 1 2) #u8(3 4 5))

                    =>  #u8(0 1 2 3 4 5)

R
7
RS procedure

(utf8→string bytevector) 

(utf8→string bytevector start) 

(utf8→string bytevector start end) 

(string→utf8 string) 

(string→utf8 string start) 

(string→utf8 string start end) 

These procedures translate between strings and bytevectors that encode those strings using the

UTF-8 encoding. The utf8→string procedure decodes the bytes of a bytevector between start and

end and returns the corresponding string; the string→utf8 procedure encodes the characters of a

string between start and end and returns the corresponding bytevector.

It is an error for bytevector to contain invalid UTF-8 byte sequences.

(utf8->string #u8(#x41))   => "A"

(string->utf8 "λ")         => #u8((#xce #xbb)

4.11. Control features

R
5
RS procedure

(procedure? obj) 

Returns #t if obj is a procedure, otherwise returns #f.

(procedure? car)                            =>  #t

(procedure? 'car)                           =>  #f

(procedure? (lambda (x) (* x x)))           =>  #t

(procedure? '(lambda (x) (* x x)))          =>  #f



(call-with-current-continuation procedure?) =>  #t

R
5
RS procedure

(apply proc arg1 … args) 

Proc must be a procedure and args must be a list. Calls proc with the elements of the list

(append (list arg1 ...) args)

as the actual arguments.

(apply + (list 3 4))              =>  7

(define compose

  (lambda (f g)

     (lambda args

       (f (apply g args)))))

((compose sqrt *) 12 75)          =>  30

R
5
RS procedure

(map proc list1 list2 …) 

The list`s must be lists, and `proc must be a procedure taking as many arguments as there are

lists and returning a single value. If more than one list is given, then they must all be the same

length. Map applies proc element-wise to the elements of the `list`s and returns a list of the results,

in order. The dynamic order in which proc is applied to the elements of the lists is unspecified.

(map cadr '((a b) (d e) (g h)))   =>  (b e h)

(map (lambda (n) (expt n n))

     '(1 2 3 4 5))                =>  (1 4 27 256 3125)

(map + '(1 2 3) '(4 5 6))         =>  (5 7 9)

(let ((count 0))

  (map (lambda (ignored)

      (set! count (+ count 1))

      count)



       '(a b)))                   =>  (1 2) ,(emph "or") (2 1)

R
7
RS procedure

(string-map proc string1 string2 …) 

The strings must be strings, and proc must be a procedure taking as many arguments as there are

strings and returning a single value. If more than one string is given and not all strings have the

same length, string-map terminates when the shortest list runs out. String-map applies proc element-

wise to the elements of the strings and returns a string of the results, in order. The dynamic order

in which proc is applied to the elements of the strings is unspecified.

(string-map char-downcase "AbdEgH")

         => "abdegh"

(string-map

  (lambda (c)

    (integer->char (+ 1 (char->integer c))))

  "HAL")

         => "IBM"

(string-map (lambda (c k)

           (if (eqv? k #u)

               (char-upcase c)

               (char-downcase c)))

         "studlycaps"

         "ululululul")

      => "StUdLyCaPs"

R
7
RS procedure

(vector-map proc vector1 vector2 …) 

The vectors must be vectors, and proc must be a procedure taking as many arguments as there are

vectors and returning a single value. If more than one vector is given and not all vectors have the

same length, vector-map terminates when the shortest list runs out. Vector-map applies proc element-

wise to the elements of the vectors and returns a vector of the results, in order. The dynamic order

in which proc is applied to the elements of the vectors is unspecified.

(vector-map cadr '#((a b) (d e) (g h)))

    =>  #(b e h)



(vector-map (lambda (n) (expt n n))

         '#(1 2 3 4 5))

    => #(1 4 27 256 3125)

(vector-map + '#(1 2 3) '#(4 5 6))

    => #(5 7 9)

(let ((count 0))

  (vector-map

    (lambda (ignored)

      (set! count (+ count 1))

      count)

    '#(a b)))

    => #(1 2) or #(2 1)

R
5
RS procedure

(for-each proc list1 list2 …) 

The arguments to for-each are like the arguments to map, but for-each calls proc for its side effects

rather than for its values. Unlike map, for-each is guaranteed to call proc on the elements of the lists

in order from the first element(s) to the last, and the value returned by for-each is void.

(let ((v (make-vector 5)))

  (for-each (lambda (i)

              (vector-set! v i (* i i)))

            '(0 1 2 3 4))

  v)                                =>  #(0 1 4 9 16)

R
7
RS procedure

(string-for-each proc string1 string2 …) 

The arguments to string-for-each are like the arguments to string-map, but string-for-each calls

proc for its side effects rather than for its values. Unlike string-map, string-for-each is guaranteed to

call proc on the elements of the lists in order from the first element(s) to the last, and the value

returned by string-for-each is unspecified. If more than one string is given and not all strings have

the same length, string-for-each terminates when the shortest string runs out.

(let ((v (list)))

  (string-for-each (lambda (c) (set! v (cons (char->integer c) v)))

                   "abcde")



   v)

       => (101 100 99 98 97)

R
7
RS procedure

(vector-for-each proc vector1 vector2 …) 

The arguments to vector-for-each are like the arguments to vector-map, but vector-for-each calls

proc for its side effects rather than for its values. Unlike vector-map, vector-for-each is guaranteed to

call proc on the elements of the lists in order from the first element(s) to the last, and the value

returned by vector-for-each is unspecified. If more than one vector is given and not all vectors

have the same length, vector-for-each terminates when the shortest vector runs out.

(let ((v (make-vector 5)))

  (vector-for-each (lambda (i) (vector-set! v i (* i i)))

                '#(0 1 2 3 4))

  v)

       => #(0 1 4 9 16)

STklos procedure

(every pred list1 list2 …) 

every applies the predicate pred across the lists, returning true if the predicate returns true on every

application.

If there are n list arguments list1 … listn, then pred must be a procedure taking n arguments and

returning a boolean result.

every applies pred to the first elements of the listi parameters. If this application returns false,

every immediately returns #f. Otherwise, it iterates, applying pred to the second elements of the

listi parameters, then the third, and so forth. The iteration stops when a false value is produced or

one of the lists runs out of values. In the latter case, every returns the true value produced by its

final application of pred. The application of pred to the last element of the lists is a tail call.

If one of the listi has no elements, every simply returns #t.

Like any, every’s name does not end with a question mark — this is to indicate that it does not

return a simple boolean (#t` or #f), but a general value.

STklos procedure



(any pred list1 list2 …) 

any applies the predicate across the lists, returning true if the predicate returns true on any

application.

If there are n list arguments list1 … listn, then pred must be a procedure taking n arguments.

any applies pred to the first elements of the listi parameters. If this application returns a true

value, any immediately returns that value. Otherwise, it iterates, applying pred to the second

elements of the listi parameters, then the third, and so forth. The iteration stops when a true value

is produced or one of the lists runs out of values; in the latter case, any returns #f. The application

of pred to the last element of the lists is a tail call.

Like every, any’s name does not end with a question mark — this is to indicate that it does not

return a simple boolean (#t` or #f), but a general value.

(any integer? '(a 3 b 2.7))   => #t

(any integer? '(a 3.1 b 2.7)) => #f

(any < '(3 1 4 1 5)

       '(2 7 1 8 2))          => #t

R
5
RS procedure

(call-with-current-continuation proc) 

(call/cc proc) 

Proc must be a procedure of one argument. The procedure call-with-current-continuation

packages up the current continuation (see the rationale below) as an "escape procedure" and passes

it as an argument to proc. The escape procedure is a Scheme procedure that, if it is later called, will

abandon whatever continuation is in effect at that later time and will instead use the continuation

that was in effect when the escape procedure was created. Calling the escape procedure may cause

the invocation of before and after thunks installed using dynamic-wind.

The escape procedure accepts the same number of arguments as the continuation to the original

call to call-with-current-continuation. Except for continuations created by the call-with-values

procedure, all continuations take exactly one value.

The escape procedure that is passed to proc has unlimited extent just like any other procedure in

Scheme. It may be stored in variables or data structures and may be called as many times as

desired.

The following examples show only the most common ways in which call-with-current-

continuation is used. If all real uses were as simple as these examples, there would be no need for a

procedure with the power of call-with-current-continuation.



(call-with-current-continuation

  (lambda (exit)

    (for-each (lambda (x)

                (if (negative? x)

                    (exit x)))

              '(54 0 37 -3 245 19))

    #t))                                =>  -3

(define list-length

  (lambda (obj)

    (call-with-current-continuation

      (lambda (return)

        (letrec ((r

                  (lambda (obj)

                    (cond ((null? obj) 0)

                          ((pair? obj)

                           (+ (r (cdr obj)) 1))

                          (else (return #f))))))

          (r obj))))))

(list-length '(1 2 3 4))                =>  4

(list-length '(a b . c))                =>  #f


common use of call-with-current-continuation is for structured, non-local exits

from loops or procedure bodies, but in fact call-with-current-continuation is

extremely useful for implementing a wide variety of advanced control structures.

Whenever a Scheme expression is evaluated there is a continuation wanting the result of the

expression. The continuation represents an entire (default) future for the computation. If the

expression is evaluated at top level, for example, then the continuation might take the result, print

it on the screen, prompt for the next input, evaluate it, and so on forever. Most of the time the

continuation includes actions specified by user code, as in a continuation that will take the result,

multiply it by the value stored in a local variable, add seven, and give the answer to the top level

continuation to be printed. Normally these ubiquitous continuations are hidden behind the scenes

and programmers do not think much about them. On rare occasions, however, a programmer may

need to deal with continuations explicitly. Call-with-current-continuation allows Scheme

programmers to do that by creating a procedure that acts just like the current continuation.

 call/cc is just another name for call-with-current-continuation.

STklos procedure

(call/ec proc) 

call/ec is an short name for call-with-escape-continuation. call/ec calls proc with one parameter,



which is the current escape continuation (a continuation which can only be used to abort a

computation and hence cannot be "re-enterered").

(list 1

      (call/ec (lambda (return) (list 'a (return 'b) 'c)))

      3)        => (1 b 3)

call/ec is cheaper than the full call/cc. It is particularily useful when all the power of call/cc is not

needded.

R
5
RS procedure

(values obj …) 

Delivers all of its arguments to its continuation.


R

5
RS imposes to use multiple values in the context of a call-with-values. In STklos,

if values is not used with call-with-values, only the first value is used (i.e. others

values are ignored)).

R
5
RS procedure

(call-with-values producer consumer) 

Calls its producer argument with no values and a continuation that, when passed some values, calls

the consumer procedure with those values as arguments. The continuation for the call to consumer

is the continuation of the call to call-with-values.

(call-with-values (lambda () (values 4 5))

                  (lambda (a b) b))                =>  5

(call-with-values * -)                             =>  -1

STklos syntax

(receive <formals> <expression> <body>) 

This form is defined in SRFI-8 (Receive: Binding to multiple values). It simplifies the usage of

multiple values. Specifically, <formals> can have any of three forms:

http://srfi.schemers.org/srfi-8/srfi-8.html


• (<variable1> … <variablen>): The environment in which the receive-expression is evaluated is

extended by binding <variable1>, …, <variablen> to fresh locations.

The <expression> is evaluated, and its values are stored into those locations. (It is an error if

<expression> does not have exactly n values.)

• <variable>: The environment in which the receive-expression is evaluated is extended by

binding <variable> to a fresh location.

The <expression> is evaluated, its values are converted into a newly allocated list, and the list is

stored in the location bound to <variable>.

• (<variable1> … <variablen> . <variablen+1>): The environment in which the receive-expression is

evaluated is extended by binding <variable1>, …, <variablen+1> to fresh locations. The

<expression> is evaluated. Its first n values are stored into the locations bound to <variable1> …

<variablen>. Any remaining values are converted into a newly allocated list, which is stored into

the location bound to <variablen+1>. (It is an error if <expression> does not have at least n values.

In any case, the expressions in <body> are evaluated sequentially in the extended environment. The

results of the last expression in the body are the values of the receive-expression.

(let ((n 123))

  (receive (q r)

     (values (quotient n 10) (modulo n 10))

     (cons q r)))

              => (12 . 3)

R
5
RS procedure

(dynamic-wind before thunk after) 

Calls thunk without arguments, returning the result(s) of this call. Before and after are called, also

without arguments, as required by the following rules (note that in the absence of calls to

continuations captured using call-with-current-continuation the three arguments are called once

each, in order). Before is called whenever execution enters the dynamic extent of the call to thunk

and after is called whenever it exits that dynamic extent. The dynamic extent of a procedure call is

the period between when the call is initiated and when it returns. In Scheme, because of call-with-

current-continuation, the dynamic extent of a call may not be a single, connected time period. It is

defined as follows:

• The dynamic extent is entered when execution of the body of the called procedure begins.

• The dynamic extent is also entered when execution is not within the dynamic extent and a

continuation is invoked that was captured (using call-with-current-continuation) during the

dynamic extent.

• It is exited when the called procedure returns.

• It is also exited when execution is within the dynamic extent and a continuation is invoked that

was captured while not within the dynamic extent.



If a second call to dynamic-wind occurs within the dynamic extent of the call to thunk and then a

continuation is invoked in such a way that the afters from these two invocations of dynamic-wind are

both to be called, then the after associated with the second (inner) call to dynamic-wind is called first.

If a second call to dynamic-wind occurs within the dynamic extent of the call to thunk and then a

continuation is invoked in such a way that the befores from these two invocations of dynamic-wind

are both to be called, then the before associated with the first (outer) call to dynamic-wind is called

first.

If invoking a continuation requires calling the before from one call to dynamic-wind and the after

from another, then the after is called first.

The effect of using a captured continuation to enter or exit the dynamic extent of a call to before or

after is undefined.

(let ((path '())

      (c #f))

  (let ((add (lambda (s)

               (set! path (cons s path)))))

    (dynamic-wind

      (lambda () (add 'connect))

      (lambda ()

        (add (call-with-current-continuation

               (lambda (c0)

                 (set! c c0)

                 'talk1))))

      (lambda () (add 'disconnect)))

    (if (< (length path) 4)

        (c 'talk2)

        (reverse path))))

                  =>  (connect talk1 disconnect

                       connect talk2 disconnect)

R
5
RS procedure

(eval expression environment) 

(eval expression) 

Evaluates expression in the specified environment and returns its value. Expression must be a valid

Scheme expression represented as data. Environment may be a R
5
RS environment-specifier

(interaction-environment, scheme-report-environment or null-environment) or a STklos module.

(eval '(* 7 3) (scheme-report-environment 5))

              => 21

(let ((f (eval '(lambda (f x) (f x x))

               (null-environment 5))))



  (f + 10))

              => 20

(define-module A

  (define x 1))

(eval '(cons x x) (find-module 'A))

              => (1 . 1)

R
7
RS procedure

(environment set1 …) 

This procedure returns a specifier for the environment that results by starting with an empty

environment and then importing each set, considered as an import set, into it. The bindings of the

environment represented by the specifier, as is the environment itself.

In STklos, - each set argument can be a list (specifying an R
7
RS library) or a symbol (specifying a

module). - the return environment is an R
7
RS library (which can be passed to eval).

(eval '(* 7 3) (environment '(scheme base)))    => 21

(let ((f (eval '(lambda (f x) (f x x))

               (null-environment 5))))

  (f + 10))                                     => 20

(eval '(define foo 32)

      (environment '(scheme base)))             => errror

(let ((e (environment '(only (scheme base) + -)

                      '(only (scheme write) display))))

  (length (module-symbols e)))                  => 3

(let ((e (environment '(prefix (only (scheme base) car)

                               foo-))))

   (module-symbols e))                            => (foo-car)

R
5
RS procedure

(scheme-report-environment) 

(scheme-report-environment version) 

Returns a specifier for an environment that contains the bindings defined in the R
5
RS report.

 In STklos, scheme-report-environment function can be called without the version



number (defaults to 5).

R
5
RS procedure

(null-environment) 

(null-environment version) 

Returns a specifier for an environment that is empty except for the (syntactic) bindings for all

syntactic keywords defined in the R
5
RS report.


In STklos, null-environment function can be called without the version number

(defaults to 5).

R
5
RS procedure

(interaction-environment) 

This procedure returns the environment in the expression are evaluated by default (the STklos

module). The returned environment is mutable.

STklos procedure

(eval-from-string str) 

(eval-from-string str module) 

(eval-from-string-ci str) 

(eval-from-string-ci str module) 

Read an expression from str and evaluates it with eval. If a module is passed, the evaluation takes

place in the environment of this module. Otherwise, the evaluation takes place in the environment

returned by current-module. The primitive eval-from-string-ci uses the read-ci to read the form to

evaluate.

(define x 10)

(define-module M

  (define x 100))

(eval-from-string "(+ x x)")                   => 20

(eval-from-string "(+ x x)" (find-module 'M))  => 200

(eval-from-string "(cons 'A 'B)")              => (A . B)

(eval-from-string-ci "(cons 'A 'B)")           => (a . b)



4.12. Input and Output

R
5
RS states that ports represent input and output devices. However, it defines only ports which are

attached to files. In STklos, ports can also be attached to strings, to a external command input or

output, or even be virtual (i.e. the behavior of the port is given by the user).

• String ports are similar to file ports, except that characters are read from (or written to) a string

rather than a file.

• External command input or output ports are implemented with Unix pipes and are called pipe

ports. A pipe port is created by specifying the command to execute prefixed with the string "| "

(that is a pipe bar followed by a space). Specification of a pipe port can occur everywhere a file

name is needed.

• Virtual ports are created by supplying basic I/O functions at port creation time. These functions

will be used to simulate low level accesses to a ``virtual device''. This kind of port is

particularly convenient for reading or writing in a graphical window as if it was a file. Once a

virtual port is created, it can be accessed as a normal port with the standard Scheme primitives.

4.12.1. Ports

R
7
RS procedure

(call-with-port port proc) 

The call-with-port procedure calls proc with port as an argument. If proc returns, then the port is

closed automatically and the values yielded by the proc are returned. If proc does not return, then

the port must not be closed automatically unless it is possible to prove that the port will never again

be used for a read or write operation.

It is an error if proc does not accept one argument.

R
5
RS procedure

(call-with-input-file string proc) 

(call-with-output-file string proc) 

String should be a string naming a file, and proc should be a procedure that accepts one argument.

For call-with-input-file, the file should already exist. These procedures call proc with one

argument: the port obtained by opening the named file for input or output. If the file cannot be

opened, an error is signaled. If proc returns, then the port is closed automatically and the value(s)

yielded by the proc is(are) returned. If proc does not return, then the port will not be closed

automatically.

 Because Scheme’s escape procedures have unlimited extent, it is possible to escape



from the current continuation but later to escape back in. If implementations were

permitted to close the port on any escape from the current continuation, then it

would be impossible to write portable code using both call-with-current-

continuation and call-with-input-file or call-with-output-file.

STklos procedure

(call-with-input-string string proc) 

behaves as call-with1-input-file except that the port passed to proc is the sting port obtained from

port.

(call-with-input-string "123 456"

  (lambda (x)

     (let* ((n1 (read x))

            (n2 (read x)))

        (cons n1 n2))))          => (123 . 456)

STklos procedure

(call-with-output-string proc) 

Proc should be a procedure of one argument. Call-with-output-string calls proc with a freshly

opened output string port. The result of this procedure is a string containing all the text that has

been written on the string port.

(call-with-output-string

  (lambda (x) (write 123 x) (display "Hello" x))) => "123Hello"

R
5
RS procedure

(input-port? obj) 

(output-port? obj) 

Returns #t if obj is an input port or output port respectively, otherwise returns #f.

R
7
RS procedure



(textual-port? obj) 

(binary-port? obj) 

Returns #t if obj is a textual port or binary port respectively, otherwise returns #f.

R
7
RS procedure

(port? obj) 

Returns #t if obj is an input port or an output port, otherwise returns #f.

STklos procedure

(input-string-port? obj) 

(output-string-port? obj) 

Returns #t if obj is an input string port or output string port respectively, otherwise returns #f.

STklos procedure

(input-bytevector-port? obj) 

(output-bytevector-port? obj) 

Returns #t if obj is an input bytevector port or output bytevector port respectively, otherwise

returns #f.

STklos procedure

(input-file-port? obj) 

(output-file-port? obj) 

Returns #t if obj is a file input port or a file output port respectively, otherwise returns #f.

R
7
RS procedure

(input-port-open? port) 



(output-port-open? port) 

Returns #t if port is still open and capable of performing input or output, respectively, and #f

otherwise.

STklos procedure

(input-virtual-port? obj) 

(output-virtual-port? obj) 

Returns #t if obj is a virtual input port or a virtual output port respectively, otherwise returns #f.

STklos procedure

(interactive-port? port) 

Returns #t if port is connected to a terminal and #f otherwise.

R
5
RS procedure

(current-input-port obj) 

(current-output-port obj) 

Returns the current default input or output port.

STklos procedure

(current-error-port obj) 

Returns the current default error port.

R
5
RS procedure

(with-input-from-file string thunk) 

(with-output-to-file string thunk) 

String should be a string naming a file, and proc should be a procedure of no arguments. For with-



input-from-file, the file should already exist. The file is opened for input or output, an input or

output port connected to it is made the default value returned by current-input-port or current-

output-port (and is used by (read), (write obj), and so forth), and the thunk is called with no

arguments. When the thunk returns, the port is closed and the previous default is restored. With-

input-from-file and with-output-to-file return(s) the value(s) yielded by thunk.

The following example uses a pipe port opened for reading. It permits to read all the lines produced

by an external ,(emph "ls") command (i.e. the output of the ,(emph "ls") command is ,(emph

"redirected") to the Scheme pipe port).

(with-input-from-file "| ls -ls"

  (lambda ()

    (do ((l (read-line) (read-line)))

        ((eof-object? l))

      (display l)

      (newline))))

Hereafter is another example of Unix command redirection. This time, it is the standard input of

the Unix command which is redirected.

(with-output-to-file "| mail root"

  (lambda ()

    (display "A simple mail from Scheme")

    (newline)))

STklos procedure

(with-error-to-file string thunk) 

This procedure is similar to with-output-to-file, excepted that it uses the current error port instead

of the output port.

STklos procedure

(with-input-from-string string thunk) 

A string port is opened for input from string. Current-input-port is set to the port and thunk is

called. When thunk returns, the previous default input port is restored. With-input-from-string

returns the value(s) computed by thunk.

(with-input-from-string "123 456"



  (lambda () (read)))                       =>  123

STklos procedure

(with-output-to-string thunk) 

A string port is opened for output. Current-output-port is set to it and thunk is called. When thunk

returns, the previous default output port is restored. With-output-to-string returns the string

containing the text written on the string port.

(with-output-to-string

   (lambda () (write 123) (write "Hello"))) => "123\"Hello\""

STklos procedure

(with-input-from-port port thunk) 

(with-output-to-port port thunk) 

(with-error-to-port port thunk) 

Port should be a port, and proc should be a procedure of no arguments. These procedures do a job

similar to the with-…-file counterparts excepted that they use an open port instead of string

specifying a file name

R
5
RS procedure

(open-input-file filename) 

Takes a string naming an existing file and returns an input port capable of delivering characters

from the file. If the file cannot be opened, an error is signalled.


if filename starts with the string "| ", this procedure returns a pipe port.

Consequently, it is not possible to open a file whose name starts with those two

characters.

STklos procedure

(open-input-string str) 



Returns an input string port capable of delivering characters from str.

R
7
RS procedure

(open-input-bytevector bytevector) 

Takes a bytevector and returns a binary input port that delivers bytes from the bytevector.

STklos procedure

(open-input-virtual :key (read-char #f) (ready? #f) (eof? #f) (close #f)) 

Returns a virtual port using the read-char procedure to read a character from the port, ready? to

know if there is any data to read from the port, eof? to know if the end of file is reached on the port

and finally close to close the port. All these procedure takes one parameter which is the port from

which the input takes place. Open-input-virtual accepts also the special value #f for the I/O

procedures with the following conventions:

• if read-char or eof? is #f, any attempt to read the virtual port will return an eof object;

• if ready? is #f, the file is always ready for reading;

• if close is #f, no action is done when the port is closed.

Hereafter is a possible implementation of open-input-string using virtual ports:

(define (open-input-string str)

  (let ((index 0))

    (open-input-virtual

       :read-char (lambda (p)

                    ;; test on eof is already done by the system

                    (let ((res (string-ref str index)))

                      (set! index (+ index 1))

                      res))

       :eof? (lambda (p) (>= index (string-length str))))))

R
5
RS procedure

(open-output-file filename) 

Takes a string naming an output file to be created and returns an output port capable of writing

characters to a new file by that name. If the file cannot be opened, an error is signalled. If a file



with the given name already exists, it is rewritten.


if filename starts with the string "| ", this procedure returns a pipe port.

Consequently, it is not possible to open a file whose name starts with those two

characters.

STklos procedure

(open-output-string) 

Returns an output string port capable of receiving and collecting characters.

R
7
RS procedure

(open-output-bytevector) 

Returns a binary output port that will accumulate bytes for retrieval by get-output-bytevector.

STklos procedure

(open-output-virtual :key (write-char #f) (write-string #f) (flush #f) (close #f)) 

Returns a virtual port using the write-char procedure to write a character to the port, write-string

to write a string to the port, flush to (eventuelly) flush the characters on the port and finally

close`to close the port. `Write-char takes two parameters: a character and the port to which the

output must be done. write-string takes two parameters: a string and a port. Flush and Close take

one parameter which is the port on which the action must be done. Open-output-virtual accepts

also the special value #f for the I/O procedures. If a procedure is #f nothing is done on the

corresponding action.

Hereafter is a (very inefficient) implementation of a variant of open-output-string using virtual

ports. The value of the output string is printed when the port is closed:

(define (open-output-string)

  (let ((str ""))

    (open-output-virtual

       :write-char (lambda (c p)

                     (set! str (string-append str (string c))))

       :write-string (lambda (s p)

                       (set! str (string-append str s)))



       :close (lambda (p) (write str) (newline)))))


write-string is mainly used for writing strings and is generally more efficient than

writing the string character by character. However, if write-string is not provided,

strings are printed with write-char. On the other hand, if write-char is absent,

characters are written by successive allocation of one character strings.

Hereafter is another example: a virtual file port where all characters are converted to upper case:

(define (open-output-uppercase-file file)

  (let ((out (open-file file "w")))

    (and out

         (open-output-virtual

             :write-string (lambda (s p)

                             (display (string-upper s) out))

             :close (lambda (p)

                      (close-port out))))))

STklos procedure

(open-file filename mode) 

Opens the file whose name is filename with the specified string mode which can be:

• "r" to open the file for reading. The stream is positioned at the beginning of the file.

• "r+" to open the file for reading and writing. The stream is positioned at the beginning of the

file.

• "w" to truncate the file to zero length or create the file for writing. The stream is positioned at

the beginning of the file.

• "w+" to open the file for reading and writing. The file is created if it does not exist, otherwise it is

truncated. The stream is positioned at the beginning of the file.

• "a" to open the file for writing. The file is created if it does not exist. The stream is positioned at

the end of the file.

• "a+" to open the file for reading and writing. The file is created if it does not exist. The stream is

positioned at the end of the file.

If the file can be opened, open-file returns the textual port associated with the given file, otherwise

it returns #f. Here again, the magic string "| " permits to open a pipe port. (In this case mode can

only be "r" or "w".)

STklos procedure



(get-output-string port) 

Returns a string containing all the text that has been written on the output string port.

 (let ((p (open-output-string)))

    (display "Hello, world" p)

    (get-output-string p))         => "Hello, world"

STklos procedure

(get-output-bytevector port) 

Returns a bytevector consisting of the bytes that have been output to the port so far in the order

they were output.

 (let ((p (open-output-bytevector)))

    (u8-write 65)

    (u8-write 66)

    (get-output-bytevector p))         => #u8(65 66)

R
5
RS procedure

(close-input-port port) 

(close-output-port port) 

Closes the port associated with port, rendering the port incapable of delivering or accepting

characters. These routines have no effect if the port has already been closed. The value returned is

void.

R
7
RS procedure

(close-port port) 

Closes the port associated with port.

STklos procedure



(port-rewind port) 

Sets the port position to the beginning of port. The value returned by port-rewind is void.

STklos procedure

(port-seek port pos) 

(port-seek port pos whence) 

Sets the file position for the given port to the position pos. The new position, measured in bytes, is

obtained by adding pos bytes to the position specified by whence. If passed, whence must be one of

:start, :current or :end. The resulting position is relative to the start of the file, the current position

indicator, or end-of-file, respectively. If whence is omitted, it defaults to :start.

 After using port-seek, the value returned by port-current-line may be incorrect.

STklos procedure

(port-current-line) 

(port-current-line port) 

Returns the current line number associated to the given input port as an integer. The port

argument may be omitted, in which case it defaults to the value returned by current-input-port.


The port-seek, read-chars and read-chars! procedures generally break the line-

number. After using one of these procedures, the value returned by port-current-

line will be -1 (except a port-seek at the beginning of the port reinitializes the line

counter).

STklos procedure

(port-current-position) 

(port-current-position port) 

Returns the position associated to the given port as an integer (i.e. number of characters from the

beginning of the port). The port argument may be omitted, in which case it defaults to the value

returned by current-input-port.

STklos procedure



(port-file-name port) 

Returns the file name used to open port; port must be a file port.

STklos procedure

(port-idle-register! port thunk) 

(port-idle-unregister! port thunk) 

(port-idle-reset! port) 

port-idle-register! allows to register thunk as an idle handler when reading on port. That means

that thunk will be called continuously while waiting an input on port (and only while using a

reading primitive on this port). port-idle-unregister! can be used to unregister a handler

previously set by port-idle-register!. The primitive port-idle-reset! unregisters all the handlers

set on port.

Hereafter is a (not too realistic) example: a message will be displayed repeatedly until a sexpr is

read on the current input port.

(let ((idle (lambda () (display "Nothing to read!\n"))))

  (port-idle-register! (current-input-port) idle)

  (let ((result (read)))

    (port-idle-unregister! (current-input-port) idle)

    result))

STklos procedure

(port-closed? port) 

(port-open? port) 

port-closed? returns #t if port is closed and #f otherwise. On the contrary, port-open? returns #t if

port is open and #f otherwise.


port-closed? was the usual STklos function to test if a port is closed. port-open? has

been added to be the companion of the R
7
RS functions input-port-open? and

output-port-open?

STklos procedure

(port-close-hook-set! port thunk) 



Associate the procedure thunk to port. The thunk will be called the first time port is closed.

(let* ((tmp (temporary-file-name))

       (p   (open-output-file tmp))

       (foo #t))

  (port-close-hook-set! p

                     (lambda()

                       (remove-file tmp)

                       (set! foo #t)))

  (close-port p)

  foo)

STklos procedure

(port-close-hook port) 

Returns the user close procedure associated to the given port.

 The following procedures are defined in *link:http://srfi.schemers.org/srfi-192/srfi-

192.html[SRFI-192]* (_Port Positioning_)(((SRFI-192))) which is fully

  supported:((("SRFI-192")))

(((port-has-port-position?)))

STklos procedure

(port-has-port-position? port) 

The port-has-port-position? procedure returns #t if the port supports the port-position operation,

and #f otherwise. If the port does not support the operation, port-position signals an error.

STklos procedure

(port-position port) 

The port-position procedure returns an object representing the information state about the port

current position as is necessary to save and restore that position. This value can be useful only as

the pos argument to set-port-position!, if the latter is even supported on the port. However, if the

port is binary and the object is an exact integer, then it is the position measured in bytes, and can

be used to compute a new position some specified number of bytes away.



STklos procedure

(port-has-set-port-position!? port) 

The port-has-set-port-position!? procedure returns #t if the port supports the set-port-position!

operation, and #f otherwise.

STklos procedure

(set-port-position! port pos) 

For a textual port, it is implementation-defined what happens if pos is not the return value of a call

to port-position on port. However, a binary port will also accept an exact integer, in which case the

port position is set to the specified number of bytes from the beginning of the port data. If this is not

sufficient information to specify the port state, or the specified position is uninterpretable by the

port, an error satisfying i/o-invalid-position-error? is signaled.

If set-port-position! procedure is invoked on a port that does not support the operation or if pos is

not in the range of valid positions of port, set-port-position! signals an error. Otherwise, it sets the

current position of the port to pos. If port is an output port, set-port-position! first flushes port

(even if the port position will not change).

If port is a binary output port and the current position is set beyond the current end of the data in

the underlying data sink, the object is not extended until new data is written at that position. The

contents of any intervening positions are unspecified. It is also possible to set the position of a

binary input port beyond the end of the data in the data source, but a read will fail unless the data

has been extended by other means. File ports can always be extended in this manner within the

limits of the underlying operating system. In other types of ports, if an attempt is made to set the

position beyond the current end of data in the underlying object, and the object does not support

extension, an error satisfying i/o-invalid-position-error? is signaled.

STklos procedure

(make-i/o-invalid-position-error pos) 

Returns a condition object which satisfies i/o-invalid-position-error?. The pos argument represents

a position passed to set-position!.

STklos procedure

(i/o-invalid-position-error? obj) 



Returns #t if obj is an object created by make-i/o-invalid-position-error? or an object raised in the

circumstances described in SRFI-192 (attempt to access an invalid position in the stream), or #f if it

is not.

4.12.2. Input

R
5
RS procedure

(read) 

(read port) 

Read converts external representations of Scheme objects into the objects themselves. Read returns

the next object parsable from the given input port, updating port to point to the first character past

the end of the external representation of the object.

If an end of file is encountered in the input before any characters are found that can begin an

object, then an end of file object is returned. The port remains open, and further attempts to read

will also return an end of file object. If an end of file is encountered after the beginning of an

object’s external representation, but the external representation is incomplete and therefore not

parsable, an error is signalled.

The port argument may be omitted, in which case it defaults to the value returned by current-

input-port. It is an error to read from a closed port.

STklos read supports the SRFI-10 #,() form that can be used to denote values that do not have a

convenient printed representation. See the SRFI document for more information.

STklos procedure

(read-ci) 

(read-ci port) 

Read-ci result is identical to read except that symbols are always read as case insensitive.

STklos procedure

(read-with-shared-structure) 

(read-with-shared-structure port) 

(read/ss) 

(read/ss port) 

read-with-shared-structure is identical to read. It has been added to be compatible with ,(link-srfi

38). STklos always knew how to deal with recursive input data. read/ss is only a shorter name for

http://srfi.schemers.org/srfi-192/srfi-192.html
http://srfi.schemers.org/srfi-10/srfi-10.html


read-with-shared-structure.

STklos procedure

(define-reader-ctor tag proc) 

This procedure permits to define a new user to reader constructor procedure at run-time. It is

defined in ,(link-srfi 10) document. See SRFI document for more information.

(define-reader-ctor 'rev (lambda (x y) (cons y x)))

(with-input-from-string "#,(rev 1 2)" read)

                             => (2 . 1)

R
5
RS procedure

(read-char) 

(read-char port) 

Returns the next character available from the input port, updating the port to point to the following

character. If no more characters are available, an end of file object is returned. Port may be

omitted, in which case it defaults to the value returned by current-input-port.

STklos procedure

(read-bytes size) 

(read-bytes size port) 

Returns a newly allocated string made of size characters read from port. If less than size

characters are available on the input port, the returned string is smaller than size and its size is the

number of available characters. Port may be omitted, in which case it defaults to the value returned

by current-input-port.


This function was previously called read-chars. Usage of the old name is

deprecated.

R
7
RS procedure

(read-bytevector k) 



(read-bytevector k port) 

Reads the next k bytes, or as many as are available before the end of file, from the textual input port

into a newly allocated string in left-to-right order and returns the string. If no characters are

available before the end of file, an end-of-file object is returned.

R
7
RS procedure

(read-bytevector! k) 

(read-bytevector! k port) 

(read-bytevector! k port start) 

(read-bytevector! k port start end) 

Reads the next end - start bytes, or as many as are available before the end of file, from the binary

input port into bytevector in left-to-right order beginning at the start position. If end is not supplied,

reads until the end of bytevector has been reached. If start is not supplied, reads beginning at

position 0. Returns the number of bytes read. If no bytes are available, an end-of-file object is

returned.

STklos procedure

(read-bytes! str) 

(read-bytes! str port) 

This function reads the characters available from port in the string str by chuncks whose size is

equal to the length of str. The value returned by read-bytes! is an integer indicating the number of

characters read. Port may be omitted, in which case it defaults to the value returned by current-

input-port.

This function is similar to read-bytes except that it avoids to allocate a new string for each read.

(define (copy-file from to)

  (let* ((size 1024)

         (in  (open-input-file from))

         (out (open-output-file to))

         (s   (make-string size)))

    (let Loop ()

      (let ((n (read-bytes! s in)))

        (cond

          ((= n size)

             (write-chars s out)

             (Loop))

          (else

             (write-chars (substring s 0 n) out)



             (close-port out)))))))


This function was previously called read-chars!. Usage of the old name is

deprecated.

STklos procedure

(read-byte) 

(read-byte port) 

Returns the next character available from the input port as an integer. If the end of file is reached,

this function returns the end of file object.

R
5
RS procedure

(peek-char) 

(peek-char port) 

Returns the next character available from the input port, without updating the port to point to the

following character. If no more characters are available, an end of file object is returned. Port may

be omitted, in which case it defaults to the value returned by current-input-port.



The value returned by a call to peek-char is the same as the value that would have

been returned by a call to read-char with the same port. The only difference is that

the very next call to read-char or peek-char on that port will return the value

returned by the preceding call to peek-char. In particular, a call to peek-char on an

interactive port will hang waiting for input whenever a call to read-char would

have hung.

STklos procedure

(peek-byte) 

(peek-byte port) 

Returns the next character available from the input port, without updating the port to point to the

following character. Whereas peek-char returns a character, this function returns an integer

between 0and 255.

R
5
RS procedure



(eof-object? obj) 

Returns #t if obj is an end of file object, otherwise returns #f.

STklos procedure

(eof-object) 

end of file Returns an end of file object. Note that the special notation #eof is another way to return

such an end of file object.

R
5
RS procedure

(char-ready?) 

(char-ready? port) 

Returns #t if a character is ready on the input port and returns #f otherwise. If char-ready returns

#t then the next read-char operation on the given port is guaranteed not to hang. If the port is at

end of file then char-ready? returns #t. Port may be omitted, in which case it defaults to the value

returned by current-input-port.

R
7
RS procedure

(read-string k) 

(read-string k port) 

Reads the next k characters, or as many as are available before the end of file, from the textual

input port into a newly allocated string in left-to-right order and returns the string. If no characters

are available before the end of file, an end-of-file object is returned.

R
7
RS procedure

(read-u8) 

(read-u8 port) 

Returns the next byte available from the binary input port, updating the port to point to the

following byte. If no more bytes are available, an end-of-file object is returned.




This function is similar to the read-byte function, excepted that it can be used only

on a binary port.

R
7
RS procedure

(peek-u8) 

(peek-u8 port) 

Returns the next byte available from the binary input port, but without updating the port to point

to the following byte. If no more bytes are available, an end-of-file object is returned.


This function is similar to the peek-byte function, excepted that it can be used only

on a binary port.

R
7
RS procedure

(u8-ready?) 

(u8-ready? port) 

Returns #t if a byte is ready on the binary input port and returns #f otherwise. If u8-ready? returns

#t then the next read-u8 operation on the given port is guaranteed not to hang. If the port is at end

of file then u8-ready? returns #t.

STklos procedure

(read-line) 

(read-line port) 

Reads the next line available from the input port port. This function returns 2 values: the first one

is the string which contains the line read, and the second one is the end of line delimiter. The end of

line delimiter can be an end of file object, a character or a string in case of a multiple character

delimiter. If no more characters are available on port, an end of file object is returned. Port may be

omitted, in which case it defaults to the value returned by current-input-port.


As said in primitive values, if read-line is not used in the context of call-with-

values, the second value returned by this procedure is ignored.

STklos procedure



(read-from-string str) 

Performs a read from the given str. If str is the empty string, an end of file object is returned. Read-

from-string-ci uses read-ci to read.

(read-from-string "123 456") => 123

(read-from-string "")        => an eof object

(read-from-string "ABC")     => ABC

(read-from-string-ci "ABC")  => abc

STklos procedure

(port→string port) 

(port→sexp-list port) 

(port→string-list port) 

All these procedures take a port opened for reading. Port→string reads port until the it reads an end

of file object and returns all the characters read as a string. Port→sexp-list and port→string-list do

the same things except that they return a list of S-expressions and a list of strings respectively. For

the following example we suppose that file "foo" is formed of two lines which contains respectively

the number 100 and the string "bar".

(port->sexp-list (open-input-file "foo"))   => (100 "bar")

(port->string-list (open-input-file "foo")) => ("100" ""bar"")

4.12.3. Output

R
5
RS procedure

(write obj) 

(write obj port) 

Writes a written representation of obj to the given port. Strings that appear in the written

representation are enclosed in doublequotes, and within those strings backslash and doublequote

characters are escaped by backslashes. Character objects are written using the ,(emph "#\")

notation. Write returns an unspecified value. The port argument may be omitted, in which case it

defaults to the value returned by current-output-port.

R
7
RS procedure



(write-shared obj) 

(write-shared obj port) 

Writes a written representation of obj to the given port. The main difference with the write

procedure is that write* handles data structures with cycles. Circular structure written by this

procedure use the "#n=")) and "#n#")) notations (see Section 1.2.4).


This function is also called write*. The name write* was the name used by STklos

for write-shared before it was introduced in R
7
RS.

STklos procedure

(write-with-shared-structure obj) 

(write-with-shared-structure obj port) 

(write-with-shared-structure obj port optarg) 

(write/ss obj) 

(write/ss obj port) 

(write/ss obj port optarg) 

write-with-shared-structure has been added to be compatible with SRFI-38 (External representation

of shared structures). It is is identical to write*, except that it accepts one more parameter (optarg).

This parameter, which is not specified in SRFI-38, is always ignored. write/ss is only a shorter

name for write-with-shared-structure.

R
5
RS procedure

(display obj) 

(display obj port) 

Writes a representation of obj to the given port. Strings that appear in the written representation

are not enclosed in doublequotes, and no characters are escaped within those strings. Character

objects appear in the representation as if written by write-char instead of by write. Display returns

an unspecified value. The port argument may be omitted, in which case it defaults to the value

returned by current-output-port.


Write is intended for producing machine-readable output and display is for

producing human-readable output.

 As required by R
7
RS does not loop forever when obj contains self-references.

STklos procedure

http://srfi.schemers.org/srfi-38/srfi-38.html
http://srfi.schemers.org/srfi-38/srfi-38.html


(display-shared obj) 

(display-shared obj port) 

The display-shared procedure is the same as display, except that shared structure are represented

using datum labels.

STklos procedure

(display-simple obj) 

(display-simple obj port) 

The display-simple procedure is the same as display, except that shared structure is never

represented using datum labels. This can cause display-simple not to terminate if obj contains

circular structure.

R
5
RS procedure

(newline) 

(newline port) 

Writes an end of line to port. Exactly how this is done differs from one operating system to another.

Returns an unspecified value. The port argument may be omitted, in which case it defaults to the

value returned by current-output-port.

R
7
RS procedure

(write-string string) 

(write-string string port) 

(write-string string port start) 

(write-string string port start end) 

Writes the characters of string from start to end in left-to-right order to the textual output port.

R
7
RS procedure

(write-u8 byte) 

(write-u8 byte port) 

Writes the byte to the given binary output port.



R
7
RS procedure

(write-bytevector bytevector) 

(write-bytevector bytevector port) 

(write-bytevector bytevector port start) 

(write-bytevector bytevector port start end) 

Writes the bytes of bytevector from start to end in left-to-right order to the binary output port.

R
5
RS procedure

(write-char char) 

(write-char char port) 

Writes the character char (not an external representation of the character) to the given port and

returns an unspecified value. The port argument may be omitted, in which case it defaults to the

value returned by current-output-port.

STklos procedure

(write-chars str) 

(write-chars str port) 

Writes the characters of string str to the given port and returns an unspecified value. The port

argument may be omitted, in which case it defaults to the value returned by current-output-port.


This function is generally faster than display for strings. Furthermore, this

primitive does not use the buffer associated to port.

STklos procedure

(write-byte b) 

(write-byte b port) 

Write byte b to the port. b must be an exact integer in range between 0 and 255.



STklos procedure

(format port str obj …) 

(format str obj) 

Writes the obj`s to the given `port, according to the format string str. Str is written literally,

except for the following sequences:

• ~a or ~A is replaced by the printed representation of the next obj.

• ~s or ~S is replaced by the slashified printed representation of the next obj.

• ~w or ~W is replaced by the printed representation of the next obj (circular structures are

correctly handled and printed using write*).

• ~d or ~D is replaced by the decimal printed representation of the next obj (which must be a

number).

• ~x or ~X is replaced by the hexadecimal printed representation of the next obj (which must be a

number).

• ~o or ~O is replaced by the octal printed representation of the next obj (which must be a

number).

• ~b or ~B is replaced by the binary printed representation of the next obj (which must be a

number).

• ~c or ~C is replaced by the printed representation of the next obj (which must be a character).

• ~y or ~Y is replaced by the pretty-printed representation of the next obj. The standard pretty-

printer is used here.

• ~? is replaced by the result of the recursive call of format with the two next obj: the first item

should be a string, and the second, a list with the arguments.

• ~k or ~K is another name for ~?

• ~[w[,d]]f or ~[w[,d]]F is replaced by the printed representation of next obj (which must be a

number) with width w and d digits after the decimal. Eventually, d may be omitted.

• ~~ is replaced by a single tilde character.

• ~% is replaced by a newline

• ~t or ~T is replaced by a tabulation character.

• ~& is replaced by a newline character if it is known that the previous character was not a

newline

• ~_ is replaced by a space

• ~h or ~H provides some help

Port can be a boolean or a port. If port is #t, output goes to the current output port; if port is #f, the

output is returned as a string. Otherwise, the output is printed on the specified port.

   (format #f "A test.")        => "A test."

   (format #f "A ~a." "test")   => "A test."



   (format #f "A ~s." "test")   => "A "test"."

   (format "~8,2F" 1/3)         => "    0.33"

   (format "~6F" 32)            => "    32"

   (format "~1,2F" 4321)        => "4321.00"

   (format "~1,2F" (sqrt -3.9)) => "0.00+1.97i"

   (format "#d~d #x~x #o~o #b~b~%" 32 32 32 32)

                                => "#d32 #x20 #o40 #b100000n"

   (format #f "~&1~&~&2~&~&~&3~%")

                                => "n1n2n3n"

   (format "~a ~? ~a" 'a "~s" '(new) 'test)

                                => "a new test"


The second form of format is compliant with SRFI-28 (Basic Format Strings). That

is, when port is omitted, the output is returned as a string as if port was given the

value #f.


Since version 0.58, format is also compliant with SRFI-48 (Intermediate Format

Strings).

STklos procedure

(flush-output-port) 

(flush-output-port port) 

Flushes the buffer associated with the given output port. The port argument may be omitted, in

which case it defaults to the value returned by current-output-port

STklos procedure

(print obj …) 

(printerr obj …) 

These procedures display all their arguments followed by a newline. The procedure print uses the

standard output port, whereas printerr uses the current error port

STklos procedure

(printf fmt obj …) 

(fprintf port fmt obj …) 

(eprintf fmt obj …) 

http://srfi.schemers.org/srfi-28/srfi-28.html
http://srfi.schemers.org/srfi-48/srfi-48.html


These procedures are specialized versions of format primitive. In these procedures, fmt is a string

using the format conventions. printf outputs go on the current output port. fprintf outputs go on

the specified port. eprintf outputs go on the current error port (note that eprintf always flushes the

characters printed).

4.13. System interface

The STklos system interface offers all the functions defined in R
7
RS. Note, that the base

implementation provides also a subset of the functions defined in SRFI-170 (POSIX API). These

functions are described here.

Note, however that SRFI-170 is fully supported and accessing the other functions it defines can be

done by requiring it, as the other SRFIs that STklos supports.

4.13.1. Loading code

R
5
RS / R

7
RS procedure

(load filename) 

(load filename env) 

Filename should be a string naming an existing file containing Scheme expressions. Load has been

extended in STklos to allow loading of files containing Scheme compiled code as well as object files

(aka shared objects). The loading of object files is not available on all architectures. The value

returned by load is void.

The optional parameter env may be an environment specifier (as defined by R
7
RS) or a module.

When env is specified, the loaded code is evaluated (or run) in the environment given by env. If

omitted, (interaction-environment) is assumed. When env is specified as a module, it is mutable.

If the file whose name is filename cannot be located, load will try to find it in one of the directories

given by "load-path" with the suffixes given by "load-suffixes".

 R
5
RS defines only the one parameter version of load.

STklos procedure

(try-load filename) 

(try-load filename env) 

try-load tries to load the file named filename. As with load, try-load tries to find the file given the

current load path and a set of suffixes if filename cannot be loaded. If try-load is able to find a

http://srfi.schemers.org/srfi-170/srfi-170.html
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readable file, it is loaded, and try-load returns #t. Otherwise, try-load retuns #f.

See the description of env environment in the [load] primitive.

STklos procedure

(find-path str) 

(find-path str path) 

(find-path str path suffixes) 

In its first form, find-path returns the path name of the file that should be loaded by the procedure

load given the name str. The string returned depends of the current load path and of the currently

accepted suffixes.

The other forms of find-path are more general and allow to give a path list (a list of strings

representing supposed directories) and a set of suffixes (given as a list of strings too) to try for

finding a file. If no file is found, find-path returns #f.

For instance, on a "classical" Unix box:

(find-path "passwd" '("/bin" "/etc" "/tmp"))

            => "/etc/passwd"

(find-path "stdio" '("/usr" "/usr/include") '("c" "h" "stk"))

            => "/usr/include/stdio.h"

STklos procedure

(current-loading-file) 

Returns the path of the file that is currently being loaded.

STklos procedure

(require string) 

(provide string) 

(require/provide string) 

(provided? string) 

Require loads the file whose name is string if it was not previously "provided". Provide permits to

store string in the list of already provided files. Providing a file permits to avoid subsequent loads

of this file. Require/provide is more or less equivalent to a require followed by a provide. Provided?

returns #t if string was already provided; it returns #f otherwise.



4.13.2. File Primitives

STklos procedure

(temp-file-prefix) 

(temp-file-prefix value) 

This parameter object permits to change the default prefix used to build temporary file name. Its

default value is built using the TMPDIR environment variable (if it is defined) and the current process

ID. If a value is provided, it must be a string designating a valid prefix path.

This parameter object is also defined in SRFI-170 (POSIX API).

STklos procedure

(create-temp-file) 

(create-temp-file prefix) 

Creates a new temporary file and returns two values: its name and an opened file port on it. The

optional argument specifies the filename prefix to use, and defaults to the result of invoking temp-

file-prefix. The returned file port is opened in read/write mode. It ensures that the name cannot

be reused by another process before being used in the program that calls create-temp-file. Note,

that if the opened port is not used, it can be closed and collected by the GC.

(let-values (((name port) (create-temp-file)))

  (let ((msg (format "Name: ~sn" name)))

    (display msg)

    (display msg port)

    (close-port port)))     => prints the name of the temp. file on the

                               current output port and in the file itself.


This function is also defined in SRFI-170 (POSIX API).However, in SRFI-170, create-

temp-file returns only the name of the temporary file.

 temporary-file-name is another name for this function.

STklos procedure

(create-temp-directory) 

(create-temp-directory prefix) 
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Creates a new temporary directory and returns its name as a string. The optional argument

specifies the filename prefix to use, and defaults to the result of invoking temp-file-prefix.

STklos procedure

(rename-file string1 string2) 

Renames the file whose path-name is string1 to a file whose path-name is string2. The result of

rename-file is void.

This function is also defined in SRFI-170 (POSIX API).

R
7
RS procedure

(delete-file string) 

Removes the file whose path name is given in string. The result of delete-file is void.

This function is also called remove-file for compatibility reasons. ,(index "remove-file")

STklos procedure

(copy-file string1 string2) 

Copies the file whose path-name is string1 to a file whose path-name is string2. If the file string2

already exists, its content prior the call to copy-file is lost. The result of copy-file is void.

STklos procedure

(copy-port in out) 

(copy-port in out max) 

Copy the content of port in, which must be opened for reading, on port out, which must be opened

for writing. If max is not specified, All the characters from the input port are copied on ouput port. If

max is specified, it must be an integer indicating the maximum number of characters which are

copied from in to out.

R
7
RS procedure
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(file-exists? string) 

Returns #t if the path name given in string denotes an existing file; returns #f otherwise.

STklos procedure

(file-is-directory? string) 

(file-is-regular? string) 

(file-is-readable? string) 

(file-is-writable? string) 

(file-is-executable? string) 

Returns #t if the predicate is true for the path name given in string; returns #f otherwise (or if

string denotes a file which does not exist).

STklos procedure

(file-size string) 

Returns the size of the file whose path name is given in string. If string denotes a file which does

not exist, file-size returns #f.

STklos procedure

(getcwd) 

Returns a string containing the current working directory.

STklos procedure

(chmod str) 

(chmod str option1 …) 

Change the access mode of the file whose path name is given in string. The options must be

composed of either an integer or one of the following symbols read, write or execute. Giving no

option to chmod is equivalent to pass it the integer 0. If the operation succeeds, chmod returns #t;

otherwise it returns #f.



(chmod "~/.config/stklos/stklosrc" 'read 'execute)

(chmod "~/.config/stklos/stklosrc" #o644)

STklos procedure

(chdir dir) 

Changes the current directory to the directory given in string dir.

STklos procedure

(create-directory dir) 

(create-directory dir permissions) 

Create a directory with name dir. If permissions is omitted, it defaults to #o775 (masked by the

current umask).


This function is also defined in SRFI-170 (POSIX API). The old name make-directory

is deprecated.

STklos procedure

(create-directories dir) 

(create-directories dir permissions) 

Create a directory with name dir. No error is signaled if dir already exists. Parent directories of dir

are created as needed. If permissions is omitted, it defaults to #o775 (masked by the current umask).

 This function was also called make-directories. This old name is obsolete.

STklos procedure

(ensure-directories-exist path) 

Create a directory with name dir (and its parent directories if needed), if it does not exist yet.
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STklos procedure

(delete-directory dir) 

(remove-directory dir) 

Delete the directory with name dir.


This function is also defined in SRFI-170 (POSIX API). The name remove-directory

is kept for compatibility.

STklos procedure

(directory-files path) 

(directory-files path dotfiles?) 

Returns the list of the files in the directory path. The dotfiles? flag (default #f) causes files

beginning with ,(q ".") to be included in the list. Regardless of the value of dotfiles?, the two files ,(q

".") and ,(q "..") are never returned.

This function is also defined in SRFI-170 (POSIX API).

STklos procedure

(expand-file-name path) 

Expand-file-name expands the filename given in path to an absolute path.

  ;; Current directory is ~eg/stklos (i.e. /users/eg/stklos)

  (expand-file-name "..")            => "/users/eg"

  (expand-file-name "~eg/../eg/bin") => "/users/eg/bin"

  (expand-file-name "~/stklos)"      => "/users/eg/stk"

STklos procedure

(canonical-file-name path) 

Expands all symbolic links in path and returns its canonicalized absolute path name. The resulting

path does not have symbolic links. If path doesn’t designate a valid path name, canonical-file-name

returns #f.
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STklos procedure

(decompose-file-name string) 

Returns an `exploded'' list of the path name components given in `string. The first element in

the list denotes if the given string is an absolute path or a relative one, being "/" or "." respectively.

Each component of this list is a string.

(decompose-file-name "/a/b/c.stk") => ("/" "a" "b" "c.stk")

(decompose-file-name "a/b/c.stk")  => ("." "a" "b" "c.stk")

STklos procedure

(winify-file-name fn) 

On Win32 system, when compiled with the Cygwin environment, file names are internally

represented in a POSIX-like internal form. Winify-file-bame permits to obtain back the Win32 name

of an interned file name

(winify-file-name "/tmp")

    => "C:\cygwin\tmp"

(list (getcwd) (winify-file-name (getcwd)))

    => ("//saxo/homes/eg/Projects/STklos"

        "\\saxo\homes\eg\Projects\STklos")

STklos procedure

(posixify-file-name fn) 

On Win32 system, when compiled with the Cygwin environment, file names are internally

represented in a POSIX-like internal form. posixify-file-bame permits to obtain the interned file

name from its external form. file name

(posixify-file-name "C:\cygwin\tmp")

       => "/tmp"

STklos procedure



(basename str) 

Returns a string containing the last component of the path name given in str.

(basename "/a/b/c.stk") => "c.stk"

STklos procedure

(dirname str) 

Returns a string containing all but the last component of the path name given in str.

(dirname "/a/b/c.stk") => "/a/b"

STklos procedure

(file-suffix pathname) 

Returns the suffix of given pathname. If no suffix is found, file-suffix returns #f.

(file-suffix "./foo.tar.gz") => "gz"

(file-suffix "./a.b/c")      => #f

(file-suffix "./a.b/c.")     => ""

(file-suffix "~/.profile")   => #f

STklos procedure

(file-prefix pathname) 

Returns the prefix of given pathname.

(file-prefix "./foo.tar.gz") => "./foo.tar"

(file-prefix "./a.b/c")      => "./a.b/c"

STklos procedure



(file-separator) 

Retuns the operating system file separator as a character. This is typically #/ on Unix (or Cygwin)

systems and #\ on Windows.

STklos procedure

(make-path dirname . names) 

Builds a file name from the directory dirname and names. For instance, on a Unix system:

(make-path "a" "b" "c")   => "a/b/c"

STklos procedure

(glob pattern …) 

Glob performs file name `globbing'' in a fashion similar to the csh shell. `Glob returns a list of

the filenames that match at least one of pattern arguments. The pattern arguments may contain the

following special characters:

• ? Matches any single character.

• * Matches any sequence of zero or more characters.

• [chars] Matches any single character in chars. If chars contains a sequence of the form a-b then

any character between a and b (inclusive) will match.

• x Matches the character x.

• {a,b,…} Matches any of the strings a, b, etc. )

As with csh, a '.' at the beginning of a file’s name or just after a '/' must be matched explicitly or with

a @{@} construct. In addition, all '/' characters must be matched explicitly.

If the first character in a pattern is '~' then it refers to the home directory of the user whose name

follows the '~'. If the '~' is followed immediately by '/' then the value of the environment variable

HOME is used.

Glob differs from csh globbing in two ways:

1. it does not sort its result list (use the sort procedure if you want the list sorted).

2. glob only returns the names of files that actually exist; in csh no check for existence is made

unless a pattern contains a ?, *, or [] construct.



STklos procedure

(posix-error? obj) 

This procedure returns #t if obj is a condition object that describes a POSIX error, and #f otherwise.

This function is defined in SRFI-170 (POSIX API).

STklos procedure

(posix-error-name posix-error) 

This procedure returns a symbol that is the name associated with the value of errno when the

POSIX function reported an error. This can be used to provide programmatic recovery when a

POSIX function can return more than one value of errno.

This function is defined in SRFI-170 (POSIX API).

STklos procedure

(posix-error-message posix-error) 

This procedure returns a string that is an error message reflecting the value of errno when the

POSIX function reported an error. This string is useful for reporting the cause of the error to the

user

This function is defined in SRFI-170 (POSIX API).

STklos procedure

(posix-error-errno posix-error) 

This procedure returns the value of errno (an exact integer).

STklos procedure

(posix-error-procedure posix-error) 
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This procedure returns the name of the Scheme procedure that raised the error.

STklos procedure

(posix-error-args posix-error) 

This procedure returns the list of the Scheme procedure arguments that raised the error.

4.13.3. Environment

STklos procedure

(getenv str) 

(getenv) 

Looks for the environment variable named str and returns its value as a string, if it exists.

Otherwise, getenv returns #f. If getenv is called without parameter, it returns the list of all the

environment variables accessible from the program as an A-list.

(getenv "SHELL")

     => "/bin/zsh"

(getenv)

     => (("TERM" . "xterm") ("PATH" . "/bin:/usr/bin") ...)

STklos procedure

(setenv! var value) 

Sets the environment variable var to value. Var and value must be strings. The result of setenv! is

void.

STklos procedure

(unsetenv! var) 

Unsets the environment variable var. Var must be a string. The result of unsetenv! is void.



STklos defines also the R
7
RS (and SRFI-96) standard primivitives to acess environment variables.

R
7
RS procedure

(get-environment-variable name) 

Returns the value of the named environment variable as a string, or #f if the named environment

variable is not found. The name argument is expected to be a string. This function is similar to the

getenv. It has been added to be support SRFI-98 (Interface to access environment variables).

R
7
RS procedure

(get-environment-variables) 

Returns names and values of all the environment variables as an a-list. This function is defined by

SRFI-98 (Interface to access environment variables).

STklos procedure

(build-path-from-shell-variable var) 

(build-path-from-shell-variable var sep) 

Builds a path as a list of strings (which is the way STklos represents paths) from the environment

variable var, given the separator characters given in sep (which defaults to ":", the standrad Unix

path separator). If the var is not definied in the environment, build-path-from-shell-variable

returns the empty list.

If the shell variable MYPATH is "/bin:/sbin:/usr/bin"`, then

(build-path-from-shell-variable "MYPATH")       => ("/bin" "/sbin" "/usr/bin")

(build-path-from-shell-variable "MYPATH" "/:")  => ("bin" "sbin" "usr" "bin")

STklos procedure

(install-path) 

(install-path key) 

Returns the list of the installation directories chosen when STklos was configured. Without

http://srfi.schemers.org/srfi-96/srfi-96.html
http://srfi.schemers.org/srfi-98/srfi-98.html
http://srfi.schemers.org/srfi-98/srfi-98.html


parameter, install-path returns the path of all configured directories. When key is provided, only

the corresponding path is returned. Key can be:

• #:libdir (directory for architecture specific installed files)

• #:datadir (directory for portable installed files)

• #:docdir (directory for installed documentation)

• #:htmldir (directory for installed HTML documentation)

• #:pdfdir (directory for installed PDF documentation)

4.13.4. Time

R
7
RS procedure

(current-second) 

Returns an inexact number representing the current time on the International Atomic Time (TAI)

scale. The value 0.0 represents midnight on January 1, 1970 TAI (equivalent to ten seconds before

midnight Universal Time) and the value 1.0 represents one TAI second later.

R
7
RS procedure

(current-jiffy) 

Returns the number of jiffies as an exact integer that have elapsed since an arbitrary,

implementation-defined epoch. A jiffy is an implementation-defined fraction of a second which is

defined by the return value of the jiffies-per-second procedure. The starting epoch is guaranteed

to be constant during a run of the program, but may vary between runs.

R
7
RS procedure

(jiffies-per-seconds) 

Returns an exact integer representing the number of jiffies per second.

(define (time-length)

  (let ((list (make-list 100000))

        (start (current-jiffy)))

    (length list)

    (/ (- (current-jiffy) start)



       (jiffies-per-second))))

STklos procedure

(clock) 

Returns an approximation of processor time, in milliseconds, used so far by the program. The value

returned is a real.

STklos procedure

(exact-clock) 

Returns an approximation of processor time, in microseconds, used so far by the program. The

value returned is an integer.

STklos procedure

(sleep n) 

Suspend the execution of the program for at ms milliseconds. Note that due to system clock

resolution, the pause may be a little bit longer. If a signal arrives during the pause, the execution

may be resumed.

STklos syntax

(time expr1 expr2 …) 

Evaluates the expressions expr1, expr2, … and returns the result of the last expression. This form

also prints the time spent for this evaluation, in milliseconds, and the quantity of bytes alocated on

the current error port, as well as the number of garbage collection done. This is CPU time, and not

real ("wall") time.

(time (begin (make-list 200) 'finish))

    Elapsed time: 0.059 ms

    Allocations: 6408 bytes in 201 allocation calls (GC: 0)

=> finish



In the example above, the result of the expression is only the symbol finish. The two other lines are

written to the standard error port.

The allocation accounting is independent for each thread, and allocations in children threads do

not increase the parent thread counters, as the example below illustrates. Note that, on the other

side, the number of GC calls is is a global counter.

(let ((T (make-thread (lambda () (make-list 1_000_000) (eprintf "finishn")))))

  (time (thread-start! T) ;; Launch T wich allocate 1_000_1000 cells

        (thread-sleep! 3) ;; wait for the child thread to allocate list

        (thread-join! T)

        100))

finish

    Elapsed time: 33.299 ms

    Allocations: 800408 bytes in 10 allocation calls (GC: 0)

100

The ten allocations we can see here are for theads bookeeping and are far from the million cells

allocated in thread T.

4.13.5. System Information

R
7
RS procedure

(features) 

Returns a list of the feature identifiers which cond-expand treats as true. Here is an example of what

features might return:

(features) => (STklos STklos-2.10.xxx exact-complex

               ieee-float full-unicode ratios little-endian ...)

STklos procedure

(running-os) 

Returns the name of the underlying Operating System which is running the program. The value

returned by runnin-os is a symbol. For now, this procedure returns either unix, android, windows, or

cygwin-windows.

STklos procedure



(hostname) 

Return the host name of the current processor as a string.

R
7
RS procedure

(command-line) 

Returns the command line passed to the process as a list of strings. The first string corresponds to

the command name.

STklos procedure

(command-name) 

Returnd the name of the running program if it is a standalone and #f otherwise. This function is

defined in SRFI-193 (Command line).

STklos procedure

(command-args) 

(argv) 

Returns a list of the arguments given on the shell command line. The interpreter options are no

included in the result. The name argv is deprecated and should not be used.

STklos procedure

(argc) 

Returns the number of arguments present on the command line.

STklos procedure

(program-name) 

http://srfi.schemers.org/srfi-193/srfi-193.html


Returns the invocation name of the current program as a string. If the file is not a script (in sense of

SRFI-193), it is the name of the running STklos interpreter, otherwise it is the name of the running

script. This function always returns a string whereas the command-name procedure returns #f when

the program name is not a script.

STklos procedure

(script-file) 

Returns the absolute path of the current script. If the calling program is not a script, #f is returned.

This function is defined in SRFI-193 (Command line).

STklos procedure

(script-directory) 

Returns the non-filename part of script-file as a string. As with script-file, this is an absolute

pathname.

STklos procedure

(version) 

(implementation-version) 

Returns a string identifying the current version of the system. A version is constituted of two (or

three) numbers separated by a point: the version, the release numbers and, eventually, a patch

number. The patch number is used for developments version only; it is absent for stable releases.

Note that implementation-version corresponds to the SRFI-112 (Environment Inquiry) name of this

function.

STklos procedure

(short-version) 

Returns a string identifying the current version of the system without its eventual patch number.

STklos procedure
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(machine-type) 

Returns a string identifying the kind of machine which is running the program. The result string is

of the form [os-name]-[os-version]-[cpu-architecture].

STklos procedure

(implementation-name) 

This function is defined in SRFI-112 (Environment Inquiry); it returns the Scheme implementation

(i.e. the string "STklos").

STklos procedure

(cpu-architecture) 

This function is defined in SRFI-112 (Environment Inquiry); it returns the CPU architecture, real or

virtual, on which this implementation is executing.

STklos procedure

(machine-name) 

This function is defined in SRFI-112 (Environment Inquiry); it returns a name for the particular

machine on which the implementation is running.

STklos procedure

(os-name) 

This function is defined in SRFI-112 (Environment Inquiry); it returns the name for the operating

system, platform, or equivalent on which the implementation is running.

STklos procedure
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(os-version) 

This function is defined in SRFI-112 (Environment Inquiry); it returns the version for the operating

system, platform, or equivalent on which the implementation is running.

STklos procedure

(getpid) 

Returns the system process number of the current program (i.e. the Unix PID as an integer).

4.13.6. Program Arguments Parsing

STklos provides a simple way to parse program arguments with the parse-arguments special form.

This form is generally used into the main| function in a Scheme script. See SRFI-22 (Running Scheme

Scripts on Unix) on how to use a main function in a Scheme program.

STklos procedure

(parse-arguments <args> <clause1> <clause2> …) 

The parse-arguments special form is used to parse the command line arguments of a Scheme script.

The implementation of this form internally uses the GNU C getopt function. As a consequence

parse-arguments accepts options which start with the '-' (short option) or '--' characters (long option).

The first argument of parse-arguments is a list of the arguments given to the program (comprising

the program name in the CAR of this list). Following arguments are clauses. Clauses are described

later.

By default, parse-arguments permutes the contents of (a copy) of the arguments as it scans, so that

eventually all the non-options are at the end. However, if the shell environment variable

POSIXLY_CORRECT is set, then option processing stops as soon as a non-option argument is

encountered.

A clause must follow the syntax:

<clause>       => string | <list-clause>

<list clause>  => (<option descr> <expr> ...) | (else <expr> ...)

<option descr> => (<option name> [<keyword> value]*)

<option name>  => string

<keyword>      => :alternate | :arg | :help
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A string clause is used to build the help associated to the command. A list clause must follow the

syntax describes an option. The <expr>s associated to a list clauses are executed when the option is

recognized. The else clauses is executed when all parameters have been parsed. The :alternate key

permits to have an alternate name for an option (generally a short or long name if the option name

is a short or long name). The :help is used to provide help about the the option. The :arg is used

when the option admit a parameter: the symbol given after :arg will be bound to the value of the

option argument when the corresponding `<expr>`s will be executed.

In an else clause the symbol other-arguments is bound to the list of the arguments which are not

options.

The following example shows a rather complete usage of the parse-arguments form

#!/usr/bin/env stklos

(define (main args)

  (parse-arguments args

     "Usage: foo [options] [parameter ...]"

     "General options:"

         (("verbose" :alternate "v" :help "be more verbose")

           (printf "Seen the verbose option~%"))

         (("long" :help "a long option alone")

           (printf "Seen the long option~%"))

         (("s" :help "a short option alone")

           (printf "Seen the short option~%"))

     "File options:"

         (("input" :alternate "f" :arg file

                   :help "use <file> as input")

           (printf "Seen the input option with ~S argument~%" file))

         (("output" :alternate "o" :arg file

                    :help "use <file> as output")

           (printf "Seen the output option with ~S argument~%" file))

     "Misc:"

         (("help" :alternate "h"

                  :help "provides help for the command")

           (arg-usage (current-error-port))

           (exit 1))

     (else

         (printf "All options parsed. Remaining arguments are ~S~%"

                 other-arguments))))

The following program invocation

foo -vs --input in -o out arg1 arg2

produces the following output

Seen the verbose option



Seen the short option

Seen the input option with "in" argument

Seen the output option with "out" argument

All options parsed. Remaining arguments are ("arg1" "arg2")

Finally, the program invocation

foo --help

produces the following output

Usage: foo [options] [parameter ...]

General options:

  --verbose, -v               be more verbose

  --long                      a long option alone

  -s                          a short option alone

File options:

  --input=<file>, -f <file>   use <file> as input

  --output=<file>, -o <file>  use <file> as output

Misc:

  --help, -h                  provides help for the command

Notes:

• Short option can be concatenated. That is,

prog -abc

is equivalent to the following program call

prog -a -b -c

• Any argument following a '--' argument is no more considered as an option, even if it starts with

a '-' or '--'.

• Option with a parameter can be written in several ways. For instance to set the output in the bar

file for the previous example can be expressed as

◦ --output=bar, or

◦ -o bar, or

◦ -obar

STklos procedure



(arg-usage port) 

(arg-usage port as-sexpr) 

This procedure is only bound inside a parse-arguments form. It pretty prints the help associated to

the clauses of the parse-arguments form on the given port. If the argument as-sexpr is passed and is

not #f, the help strings are printed on port as Sexprs. This is useful if the help strings need to be

manipulated by a program.

4.13.7. Misc. System Procedures

STklos procedure

(system string) 

Sends the given string to the system shell /bin/sh. The result of system is the integer status code the

shell returns.

STklos procedure

(exec str) 

(exec-list str) 

These procedures execute the command given in str. The command given in str is passed to

/bin/sh. Exec returns a string which contains all the characters that the command str has printed

on it’s standard output, whereas exec-list returns a list of the lines which constitute the output of

str.

(exec "echo A; echo B")                => "AnBn"

(exec-list "echo A; echo B")           => ("A" "B")

STklos procedure

(address-of obj) 

(address-ref n) 

Address-of returns the address of the object obj as an integer. Address-ref returns the object of

which n is the address.

(address-of "abc")               =>  140053283366272



(address-of "abc")               =>  140053289472288 ;strings are not eq?

(address-of 10)                  => 41

(address-of 10)                  => 41

(address-ref (address-of "xyz")) => "xyz"

(address-ref 0)                  => error (points to nothing)

STklos procedure

(exit) 

(exit ret-code) 

Exits the program with the specified integer return code. If ret-code is omitted, the program

terminates with a return code of 0. If program has registered exit functions with register-exit-

function!, they are called (in an order which is the reverse of their call order).


The STklos exit primitive accepts also an integer value as parameter (R

7
RS accepts

only a boolean).

STklos procedure

(emergency-exit) 

(emergency-exit ret-code) 

Terminates the program without running any outstanding dynamic-wind after procedures and

communicates an exit value to the operating system in the same manner as exit.


The STklos emergency-exit primitive accepts also an integer value as parameter (R
7
RS accepts only a boolean).

STklos procedure

(die message) 

(die message status) 

Die prints the given message on the current error port and exits the program with the status value.

If status is omitted, it defaults to 1.



STklos procedure

(get-password) 

This primitive permits to enter a password (character echoing being turned off). The value

returned by get-password is the entered password as a string.

STklos procedure

(register-exit-function! proc) 

This function registers proc as an exit function. This function will be called when the program exits.

When called, proc will be passed one parmater which is the status given to the exit function (or 0 if

the programe terminates normally). The result of register-exit-function! is undefined.

(let* ((tmp (temporary-file-name))

       (out (open-output-file tmp)))

  (register-exit-function! (lambda (n)

                             (when (zero? n)

                               (delete-file tmp))))

  out)

4.14. Keywords

Keywords are symbolic constants which evaluate to themselves. By default, a keyword is a symbol

whose first (or last) character is a colon (":"). Alternatively, to be compatible with other Scheme

implementations, the notation #:foo is also available to denote the keyword of name foo.

Note that the four directives keyword-colon-position-xxx or the parameter object ` keyword-colon-

position` permit to change the default behavior. See section~Identifiers for more information.

STklos procedure

(keyword obj) 

Returns #t if obj is a keyword, otherwise returns #f.

(keyword? 'foo)     => #f

(keyword? ':foo)    => #t  ; depends of keyword-colon-position

(keyword? 'foo:)    => #t  ; depends of keyword-colon-position

(keyword? '#:foo)   => #t  ; always

(keyword? :foo)     => #t  ; depends of keyword-colon-position



(keyword? foo:)     => #t  ; depends of keyword-colon-position

(keyword? #:foo)    => #t  ; always

STklos procedure

(make-keyword s) 

Builds a keyword from the given s. The parameter s must be a symbol or a string.

(make-keyword "test")    => #:test

(make-keyword 'test)     => #:test

(make-keyword ":hello")  => #::hello

STklos procedure

(keyword→string key) 

Returns the name of key as a string. The result does not contain a colon.

STklos procedure

(string→keyword str) 

This function function has been added to be compatibe with SRFI-88. It is equivalent to make-

keyword, except that the parameter cannot be a symbol.

STklos procedure

(key-get list key) 

(key-get list key default) 

List must be a list of keywords and their respective values. key-get scans the list and returns the

value associated with the given key. If key does not appear in an odd position in list, the specified

default is returned, or an error is raised if no default was specified.

(key-get '(#:one 1 #:two 2) #:one)     => 1

(key-get '(#:one 1 #:two 2) #:four #f) => #f



(key-get '(#:one 1 #:two 2) #:four)    => error

STklos procedure

(key-set! list key value) 

List must be a list of keywords and their respective values. key-set! sets the value associated to key

in the keyword list. If the key is already present in list, the keyword list is ,(emph "physically")

changed.

(let ((l (list #:one 1 #:two 2)))

  (set! l (key-set! l #:three 3))

  (cons (key-get l #:one)

        (key-get l #:three)))            => (1 . 3)

STklos procedure

(key-delete list key) 

(key-delete! list key) 

List must be a list of keywords and their respective values. key-delete remove the key and its

associated value of the keyword list. The key can be absent of the list.

key-delete! does the same job as key-delete by physically modifying its list argument.

(key-delete '(:one 1 :two 2) :two)    => (:one 1)

(key-delete '(:one 1 :two 2) :three)  => (:one 1 :two 2)

(let ((l (list :one 1 :two 2)))

   (key-delete! l :two)

   l)                                 =>  (:one 1)

STklos procedure

(keyword-colon-position) 

(keyword-colon-position value) 

This parameter object indicates the convention used by the reader to denote keywords. The allowed

values are:

• none, to forbid a symbol with colon to be interpreted as a keyword,



• before, to read symbols starting with a colon as keywords,

• after, to read symbols ending with a colon as keywords,

• both, to read symbols starting or ending with a colon as keywords.

Note that the notation #:key is always read as a keyword independently of the value of keyword-

colon-position. Hence, we have

(list (keyword? ':a)

      (keyword? 'a:)

      (keyword? '#:a))

                 => (#f #f #t)  ; if keyword-colon-position is none

                 => (#t #f #t)  ; if keyword-colon-position is before

                 => (#f #t #t)  ; if keyword-colon-position is after

                 => (#t #t #t)  ; if keyword-colon-position is both

4.15. Hash Tables

A hash table consists of zero or more entries, each consisting of a key and a value. Given the key for

an entry, the hashing function can very quickly locate the entry, and hence the corresponding

value. There may be at most one entry in a hash table with a particular key, but many entries may

have the same value.

STklos hash tables grow gracefully as the number of entries increases, so that there are always less

than three entries per hash bucket, on average. This allows for fast lookups regardless of the

number of entries in a table.

STklos hash tables procedures are identical to the ones defined in SRFI-69 (Basic Hash Tables). Note

that the default comparison function is eq? whereas it is equal? in this SRFI. See SRFI’s

documentation for more information.

STklos procedure

(make-hash-table) 

(make-hash-table comparison) 

(make-hash-table comparison hash) 

Make-hash-table admits three different forms. The most general form admit two arguments. The

first argument is a comparison function which determines how keys are compared; the second

argument is a function which computes a hash code for an object and returns the hash code as a

non negative integer. Objets with the same hash code are stored in an A-list registered in the bucket

corresponding to the key.

If omitted,

• hash defaults to the hash-table-hash procedure (see hash-table-hash primitive).

http://srfi.schemers.org/srfi-69/srfi-69.html


• comparison defaults to the eq? procedure (see eq? primitive)).

Consequently,

(define h (make-hash-table))

is equivalent to

(define h (make-hash-table eq? hash-table-hash))

An interesting example is

(define h (make-hash-table string-ci=? string-length))

which defines a new hash table which uses string-ci=? for comparing keys. Here, we use the string-

length as a (very simple) hashing function. Of course, a function which gives a key depending of the

characters composing the string gives a better repartition and should probably enhance

performance. For instance, the following call to make-hash-table should return a more efficient,

even if not perfect, hash table:

(make-hash-table

   string-ci=?

   (lambda (s)

     (let ((len (string-length s)))

       (do ((h 0)  (i 0 (+ i 1)))

           ((= i len) h)

         (set! h

               (+ h (char->integer

                      (char-downcase (string-ref s i)))))))))


Hash tables with a comparison function equal to eq? or string=? are handled in an

more efficient way (in fact, they don’t use the hash-table-hash function to speed up

hash table retrievals).

STklos procedure

(hash-table? obj) 

Returns #t if obj is a hash table, returns #f otherwise.



STklos procedure

(hash-table-hash obj) 

Computes a hash code for an object and returns this hash code as a non-negative integer. A

property of hash-table-hash is that

(equal? x y) => (equal? (hash-table-hash x) (hash-table-hash y)

as the Common Lisp sxhash function from which this procedure is modeled.

STklos procedure

(alist→hash-table alist) 

(alist→hash-table alist comparison) 

(alist→hash-table alist comparison hash) 

Returns hash-table built from the association list alist. This function maps the car of every element

in alist to the cdr of corresponding elements in alist. the comparison and hash functions are

interpreted as in make-hash-table. If some key occurs multiple times in alist, the value in the first

association will take precedence over later ones.

STklos procedure

(hash-table→alist hash) 

Returns an association list built from the entries in hash. Each entry in hash will be represented as a

pair whose car is the entry’s key and whose cdr is its value.

 the order of pairs in the resulting list is unspecified.

(let ((h (make-hash-table)))

  (dotimes (i 5)

    (hash-table-set! h i (number->string i)))

  (hash-table->alist h))

       => ((3 . "3") (4 . "4") (0 . "0")

           (1 . "1") (2 . "2"))

STklos procedure



(hash-table-set! hash key value) 

Enters an association between key and value in the`hash` table. The value returned by hash-table-

set! is void.

STklos procedure

(hash-table-ref hash key) 

(hash-table-ref hash key thunk) 

Returns the value associated with key in the given hash table. If no value has been associated with

key in hash, the specified thunk is called and its value is returned; otherwise an error is raised.

(define h1 (make-hash-table))

(hash-table-set! h1 'foo (list 1 2 3))

(hash-table-ref  h1 'foo)                 =>  (1 2 3)

(hash-table-ref  h1 'bar

                    (lambda () 'absent))  =>  absent

(hash-table-ref  h1 'bar)                 =>  error

(hash-table-set! h1 '(a b c) 'present)

(hash-table-ref  h1 '(a b c)

                     (lambda () 'absent)) => absent

(define h2 (make-hash-table equal?))

(hash-table-set! h2 '(a b c) 'present)

(hash-table-ref  h2 '(a b c))             => present

STklos procedure

(hash-table-ref/default hash key default) 

This function is equivalent to

(hash-table-ref hash key (lambda () default))

STklos procedure

(hash-table-delete! hash key) 



Deletes the entry for key in hash, if it exists. Result of hash-table-delete! is void.

(define h (make-hash-table))

(hash-table-set! h 'foo (list 1 2 3))

(hash-table-ref h 'foo)                => (1 2 3)

(hash-table-delete! h 'foo)

(hash-table-ref h 'foo

                  (lambda () 'absent)  => absent

STklos procedure

(hash-table-exists? hash key) 

Returns #t if there is any association of key in hash. Returns #f otherwise.

STklos procedure

(hash-table-update! hash key update-fun thunk) 

(hash-table-update!/default hash key update-fun default) 

Update the value associated to key in table hash if key is already in table with the value (update-fun

current-value). If no value is associated to key, a new entry in the table is first inserted before

updating it (this new entry being the result of calling thunk).

Note that the expression

(hash-table-update!/default hash key update-fun default)

is equivalent to

(hash-table-update! hash key update-fun (lambda () default))

(let ((h   (make-hash-table))

      (1+  (lambda (n) (+ n 1))))

  (hash-table-update!/default h 'test 1+ 100)

  (hash-table-update!/default h 'test 1+)

  (hash-table-ref h 'test))             => 102

STklos procedure



(hash-table-for-each hash proc) 

(hash-table-walk hash proc) 

Proc must be a procedure taking two arguments. Hash-table-for-each calls proc on each key/value

association in hash, with the key as the first argument and the value as the second. The value

returned by hash-table-for-each is void.

 The order of application of proc is unspecified.


hash-table-walk is another name for hash-table-for-each (this is the name used in

SRFI-69 (Basic Hash Tables).

(let ((h   (make-hash-table))

      (sum 0))

  (hash-table-set! h 'foo 2)

  (hash-table-set! h 'bar 3)

  (hash-table-for-each h (lambda (key value)

                           (set! sum (+ sum value))))

  sum)           =>  5

STklos procedure

(hash-table-map hash proc) 

Proc must be a procedure taking two arguments. Hash-table-map calls proc on each key/value

association in hash, with the key as the first argument and the value as the second. The result of

hash-table-map is a list of the values returned by proc, in an unspecified order.

 The order of application of proc is unspecified.

(let ((h (make-hash-table)))

  (dotimes (i 5)

    (hash-table-set! h i (number->string i)))

  (hash-table-map h (lambda (key value)

                       (cons key value))))

             => ((3 . "3") (4 . "4") (0 . "0") (1 . "1") (2 . "2"))

STklos procedure

(hash-table-keys hash) 

http://srfi.schemers.org/srfi-69/srfi-69.html


(hash-table-values hash) 

Returns the keys or the values of hash.

STklos procedure

(hash-table-fold hash func init-value) 

This procedure calls func for every association in hash with three arguments: the key of the

association key, the value of the association value, and an accumulated value, val. Val is init-value

for the first invocation of func, and for subsequent invocations of func, the return value of the

previous invocation of func. The value final-value returned by hash-table-fold is the return value

of the last invocation of func. The order in which func is called for different associations is

unspecified.

For instance, the following expression

(hash-table-fold ht (lambda (k v acc) (+ acc 1)) 0)

computes the number of associations present in the ht hash table.

STklos procedure

(hash-table-copy hash) 

Returns a copy of hash.

STklos procedure

(hash-table-merge! hash1 hash2) 

Adds all mappings in hash2 into hash1 and returns the resulting hash table. This function may

modify hash1 destructively.

STklos procedure

(hash-table-equivalence-function hash) 



Returns the equivalence predicate used for keys in hash.

STklos procedure

(hash-table-hash-function hash) 

Returns the hash function used for keys in hash.

STklos procedure

(hash-mutable? obj) 

Returns #t if obj is an immutable hash table, #f if it is a mutable hash table, and raises an error if

obj is not a hash table.

STklos procedure

(hash-immutable! obj) 

If obj is a hash table, makes it immutable. Otherwise, raises an error.

STklos procedure

(hash-table-size hash) 

Returns the number of entries in the hash.

STklos procedure

(hash-table-stats hash) 

(hash-table-stats hash port) 

Prints overall information about hash, such as the number of entries it contains, the number of

buckets in its hash array, and the utilization of the buckets. Information is printed on port. If no

port is given to hash-table-stats, information are printed on the current output port (see current-

output-port primitive).



4.16. Dates and Times

STklos stores dates and times with a compact representation which consists is an integer which

represents the number of seconds elapsed since the Epoch (00:00:00 on January 1, 1970,

Coordinated Universal Time --UTC). Dates can also be represented with date structures.

R
7
RS procedure

(current-second) 

Returns an inexact number representing the current time on the International Atomic Time (TAI)

scale. The value 0.0 represents midnight on January 1, 1970 TAI (equivalent to ten seconds before

midnight Universal Time) and the value 1.0 represents one TAI second later.

STklos procedure

(current-seconds) 

Returns the time since the Epoch (that is 00:00:00 UTC, January 1, 1970), measured in seconds in the

Coordinated Universal Time (UTC) scale.


This STklos function should not be confused with the R

7
RS primitive current-

second which returns an inexact number and whose result is expressed using the

International Atomic Time instead of UTC.

STklos procedure

(current-time) 

(current-time type) 

Return the current time as time object. The type can be time-utc or time-tai. If omitted, type is time-

utc.


To use more time types, such as time-monotonic and time-process, please load SRFI-

19.

STklos procedure

(make-time nanosecond second) 

http://srfi.schemers.org/srfi-19/srfi-19.html
http://srfi.schemers.org/srfi-19/srfi-19.html


(make-time type nanosecond second) 

Creates a time structure with the given nanosecond and second. If type is passed, it must be a symbol

representing one of the supported time types (time-tai, time-utc, time-monotonic, time-process and

time-duration).


time-monotonic, time-process and time-duration can be created, but operations on

them are only available when SRFI-19 is loaded.

STklos procedure

(time-type t) 

(set-time-type! t v) 

(time-second t) 

(set-time-second! t s) 

(time-nanosecond t) 

(set-time-nanosecond! t n) 

These are accessors for time structures.

STklos procedure

(time? obj) 

Return #t if obj is a time object, othererwise returns #f.

STklos procedure

(time→seconds time) 

Convert the time object time into an inexact real number representing the number of seconds

elapsed since the Epoch.

(time->seconds (current-time))  ==>  1138983411.09337

STklos procedure

(seconds→time x) 



Converts into a time object the real number x representing the number of seconds elapsed since the

Epoch.

(seconds->time (+ 10 (time->seconds (current-time))))

         ==>  a time object representing 10 seconds in the future

STklos procedure

(time-utc→time-tai t) 

(time-utc→time-tai! t) 

Converts t, which must be of type time-utc, to the type time-tai.

Time-utc→time-tai creates a new object, while time-utc→time-tai can use t to build the returned

object.

STklos procedure

(time-tai→time-utc t) 

(time-tai→time-utc! t) 

Converts t, which must be of type time-tai, to the type time-utc.

Time-tai→time-utc creates a new object, while time-tai→time-utc can use t to build the returned

object.

STklos procedure

(current-date) 

Returns the current system date.

STklos procedure

(make-date :key nanosecond second minute hour day month year zone-offset) 

(make-date :optional nanosecond second minute hour day month year zone-offset) 

Build a date from its argument. hour, minute, second, nanosecond default to 0; day and month default to

1; year defaults to 1970.



STklos procedure

(date? obj) 

Return #t if obj is a date, and otherwise returns #f.

STklos procedure

(date-nanosecond d) 

Return the nanosecond of date d.

STklos procedure

(date-second d) 

Return the second of date d, in the range 0 to 59.

STklos procedure

(date-minute d) 

Return the minute of date d, in the range 0 to 59.

STklos procedure

(date-hour d) 

Return the hour of date d, in the range 0 to 23.

STklos procedure

(date-day d) 



Return the day of date d, in the range 1 to 31

STklos procedure

(date-month d) 

Return the month of date d, in the range 1 to 12

STklos procedure

(date-year d) 

Return the year of date d.

STklos procedure

(date-week-day d) 

Return the week day of date d, in the range 0 to 6 (0 is Sunday).

STklos procedure

(date-year-day d) 

Return the the number of days since January 1 of date d, in the range 1 to 366.

STklos procedure

(date-dst d) 

Return an indication about daylight saving adjustment of date d:

• 0 if no daylight saving adjustment

• 1 if daylight saving adjustment

• -1 if the information is not available



STklos procedure

(date-tz d) 

Return the time zone of date d.

STklos procedure

(local-timezone-offset) 

Returns the local timezone offset, in seconds.

For example, for GMT+2 it will be 2 * 60 * 60 = 7200

(local-timezone-offset) => 0        ;; for GMT

(local-timezone-offset) => 7200     ;; for GMT+2

(local-timezone-offset) => -10800   ;; for GMT-3

The timezone is searched for in the environment variable TZ. If this variable does not appear in the

environment, the system timezone is used.

STklos procedure

(date→seconds d) 

Convert the date d to the number of seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).

(date->seconds (make-date 0 37 53 1 26 10 2012 0))   => 1351216417.0

STklos procedure

(date→string d) 

(date→string d format) 

Convert the date d using the string format as a specification. Conventions for format are the same as

the one of primitive seconds→string. If format is omitted, it defaults to "~c".



STklos procedure

(seconds→date n) 

Convert the date n expressed as a number of seconds since the Epoch, 1970-01-01 00:00:00 +0000

(UTC) into a date. n can be an exact integer or an inexact real.

This is equivalent to converting time-UTC to date.

(seconds->date 1351216417)           => #[date 2012-10-26 1:53:37]

STklos procedure

(seconds→string format n) 

Convert a date expressed in seconds using the string format as a specification. Conventions for

format are given below:

• ~~ a literal ~

• ~a locale’s abbreviated weekday name (Sun…Sat)

• ~A locale’s full weekday name (Sunday…Saturday)

• ~b locale’s abbreviate month name (Jan…Dec)

• ~B locale’s full month day (January…December)

• ~c locale’s date and time (e.g., ,(code "Fri Jul 14 20:28:42-0400 2000"))

• ~d day of month, zero padded (01…31)

• ~D date (mm/dd/yy)

• ~e day of month, blank padded ( 1…31)

• ~f seconds+fractional seconds, using locale’s decimal separator (e.g. 5.2).

• ~h same as ~b

• ~H hour, zero padded, 24-hour clock (00…23)

• ~I hour, zero padded, 12-hour clock (01…12)

• ~j day of year, zero padded

• ~k hour, blank padded, 24-hour clock (00…23)

• ~l hour, blank padded, 12-hour clock (01…12)

• ~m month, zero padded (01…12)

• ~M minute, zero padded (00…59)



• ~n new line

• ~p locale’s AM or PM

• ~r time, 12 hour clock, same as "~I:~M:~S ~p"

• ~s number of full seconds since the epoch (in UTC)

• ~S second, zero padded (00…61)

• ~t horizontal tab

• ~T time, 24 hour clock, same as "~H:~M:~S"

• ~U week number of year with Sunday as first day of week (00…53)

• ~V weekISO 8601:1988 week number of year (01…53) (week 1 is the first week that has at least 4

days in the current year, and with Monday as the first day of the week)

• ~w day of week (1…7, 1 is Monday)

• ~W week number of year with Monday as first day of week (01…52)

• ~x week number of year with Monday as first day of week (00…53)

• ~X locale’s date representation, for example: "07/31/00"

• ~y last two digits of year (00…99)

• ~Y year

• ~z time zone in RFC-822 style

• ~Z symbol time zone

STklos procedure

(seconds→list sec) 

Returns a keyword list for the date given by sec (a date based on the Epoch). The keyed values

returned are

• nanosecond : 0 to 999999

• second : 0 to 59 (but can be up to 61 to allow for leap seconds)

• minute : 0 to 59

• hour : 0 to 23

• day : 1 to 31

• month : 1 to 12

• year : e.g., 2002

• week-day : 0 (Sunday) to 6 (Saturday)

• year-day : 0 to 365 (365 in leap years)

• dst : indication about daylight savings time (see primitive date-dst).



• tz : the difference between Coordinated Universal Time (UTC) and local standard time in

seconds.])

(seconds->list (current-second))

       => (#:nanosecond 182726 #:second 21 #:minute 35 #:hour 20 #:day 10 #:month 1

           #:year 2022 #:week-day 1 #:year-day 10 #:dst 0 #:tz -3600)

STklos procedure

(date) 

Returns the current date in a string.

4.17. Boxes

Boxes are objects which contain one or several states. A box may be constructed with the box,

constant-box. STklos boxes are compatible with the one defined in SRFI-111 (Boxes) or SRFI-195

(Multiple-value boxes). Boxes of SRFI-111 can contain only one value, whereas SRFI-195 boxes can

contain multiple values. Furthermore, STklos defines also the notion of constant boxes which are

not mutable.

The read primitive can also make single valued boxes (using the #& notation). Such boxes are

mutable.

Note that two boxes are equal? iff their content are equal?.

STklos procedure

(box value …) 

(make-box value …) 

Returns a new box that contains all the given `value`s. The box is mutable.

(let ((x (box 10)))

  (list 10 x))        => (10 #&10)

 The name make-box is now obsolete and kept only for compatibility.

STklos procedure

http://srfi.schemers.org/srfi-111/srfi-111.html
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(constant-box value …) 

(make-constant-box value …) 

Returns a new box that contains all the given `value`s. The box is immutable.

 The name make-constant-box is now obsolete and kept only for compatibility.

STklos procedure

(box? obj) 

Returns #t if obj is a box, #f otherwise.

STklos procedure

(box-mutable? obj) 

Returns #t if obj is a mutable box, #f otherwise.

STklos procedure

(set-box! box value …) 

(box-set! box value …) 

Changes box to hold value`s. It is an error if `set-box! is called with a number of values that

differs from the number of values in the box being set. (In other words, set-box! does not allocate

memory.) It is also an error to call set-box! on a box which is not mutable.

The name box-set! is now obsolete and kept only for compatibility.

STklos procedure

(unbox box) 

Returns the values currently in box.

STklos procedure



(box-arity box) 

Returns the number of values in box.

STklos procedure

(unbox-value box i) 

Returns the ith value of box. It is an error if i is not an exact integer between 0 and n-1, when n is

the number of values in box.

STklos procedure

(set-box-value! box i obj) 

Changes the ith value of box to obj. It is an error if i is not an exact integer between 0 and n-1, when

n is the number of values in box.

4.18. Processes

STklos provides access to Unix processes as first class objects. Basically, a process contains

information such as the standard system process identification (aka PID on Unix Systems), the files

where the standard files of the process are redirected, …

STklos procedure

(run-process command p1 p2 …) 

run-process creates a new process and run the executable specified in command. The p correspond to

the command line arguments. The following values of p have a special meaning:

• :input permits to redirect the standard input file of the process. Redirection can come from a

file or from a pipe. To redirect the standard input from a file, the name of this file must be

specified after :input. Use the special keyword :pipe to redirect the standard input from a pipe.

• :output permits to redirect the standard output file of the process. Redirection can go to a file or

to a pipe. To redirect the standard output to a file, the name of this file must be specified after

:output. Use the special keyword :pipe to redirect the standard output to a pipe.

• :error permits to redirect the standard error file of the process. Redirection can go to a file or to

a pipe. To redirect the standard error to a file, the name of this file must be specified after error.



Use the special keyword :pipe to redirect the standard error to a pipe.

• :wait must be followed by a boolean value. This value specifies if the process must be run

asynchronously or not. By default, the process is run asynchronously (i.e. :wait is #f).

• :host must be followed by a string. This string represents the name of the machine on which the

command must be executed. This option uses the external command rsh. The shell variable PATH

must be correctly set for accessing it without specifying its abolute path.

• :fork must be followed by a boolean value. This value specifies if a fork" system call must be

done before running the process. If the process is run without fork the Scheme program is lost.

This feature mimics the ``exec’' primitive of the Unix shells. By default, a fork is

executed before running the process (i.e. `:fork is #t). This option works on Unix

implementations only.

The following example launches a process which executes the Unix command ls with the

arguments -l and /bin. The lines printed by this command are stored in the file /tmp/X

(run-process "ls" "-l" "/bin" :output "/tmp/X")

STklos procedure

(process? obj) 

Returns #t if obj is a process , otherwise returns #f.

STklos procedure

(process-alive? proc) 

Returns #t if process proc is currently running, otherwise returns #f.

STklos procedure

(process-pid proc) 

Returns an integer which represents the Unix identification (PID) of the processus.

STklos procedure



(process-input proc) 

(process-output proc) 

(process-error proc) 

Returns the file port associated to the standard input, output or error of proc, if it is redirected in

(or to) a pipe; otherwise returns #f. Note that the returned port is opened for reading when calling

process-output or process-error; it is opened for writing when calling process-input.

STklos procedure

(process-wait proc) 

Stops the current process (the Scheme process) until proc completion. Process-wait returns #f when

proc is already terminated; it returns #t otherwise.

STklos procedure

(process-exit-status proc) 

Returns the exit status of proc if it has finished its execution; returns #f otherwise.

STklos procedure

(process-send-signal proc sig) 

Sends the integer signal sig to proc. Since value of sig is system dependant, use the symbolic

defined signal constants to make your program independant of the running system (see Section

4.20). The result of process-send-signal is void.

STklos procedure

(process-kill proc) 

Kills (brutally) process. The result of process-kill is void. This procedure is equivalent to

(process-send-signal process SIGTERM)



STklos procedure

(process-stop proc) 

(process-continue proc) 

Process-stop stops the execution of proc and process-continue resumes its execution. They are

equivalent, respectively, to

(process-send-signal process SIGSTOP)

(process-send-signal process SIGCONT)

STklos procedure

(process-list) 

Returns the list of processes which are currently running (i.e. alive).

STklos procedure

(fork) 

(fork thunk) 

This procedure is a wrapper around the standard Unix fork system call which permits to create a

new (heavy) process. When called without parameter, this procedure returns two times (one time

in the parent process and one time in the child process). The value returned to the parent process is

a process object representing the child process and the value returned to the child process is always

the value #f. When called with a parameter (which must be a thunk), the new process excutes thunk

and terminate it execution when thunk returns. The value returned to the parent process is a

process object representing the child process.

4.19. Sockets

STklos defines sockets, on systems which support them, as first class objects. Sockets permits

processes to communicate even if they are on different machines. Sockets are useful for creating

client-server applications.

STklos procedure



(make-client-socket hostname port-number) 

(make-client-socket hostname port_number line-buffered) 

make-client-socket returns a new socket object. This socket establishes a link between the running

program and the application listening on port port-number of hostname. If the optional argument

line-buffered has a true value, a line buffered policy is used when writing to the client socket (i.e.

characters on the socket are tranmitted as soon as a "#newline character is encountered). The

default value of line-buffered is #t.

STklos procedure

(make-server-socket) 

(make-server-socket port-number) 

make-server-socket returns a new socket object. If port-number is specified, the socket is listening on

the specified port; otherwise, the communication port is chosen by the system.

STklos procedure

(socket-shutdown sock) 

(socket-shutdown sock close) 

Socket-shutdown shutdowns the connection associated to socket. If the socket is a server socket,

socket-shutdown is called on all the client sockets connected to this server. Close indicates if the

socket must be closed or not, when the connection is destroyed. Closing the socket forbids further

connections on the same port with the socket-accept procedure. Omitting a value for close implies

the closing of socket.

The following example shows a simple server: when there is a new connection on the port number

12345, the server displays the first line sent to it by the client, discards the others and go back

waiting for further client connections.

(let ((s (make-server-socket 12345)))

   (let loop ()

      (let ((ns (socket-accept s)))

        (format #t "I've read: ~A\n"

                (read-line (socket-input ns)))

        (socket-shutdown ns #f)

        (loop))))

STklos procedure



(socket-accept socket) 

(socket-accept socket line-buffered) 

socket-accept waits for a client connection on the given socket. If no client is already waiting for a

connection, this procedure blocks its caller; otherwise, the first connection request on the queue of

pending connections is connected and socket-accept returns a new client socket to serve this

request. This procedure must be called on a server socket created with make-server-socket. The

result of socket-accept is undefined. Line-buffered indicates if the port should be considered as a

line buffered. If line-buffered is omitted, it defaults to #t.

The following example is a simple server which waits for a connection on the port 12345 
[1]

Once the connection with the distant program is established, we read a line on the input port

associated to the socket, and we write the length of this line on its output port.

(let* ((server (make-server-socket 12345))

       (client (socket-accept server))

       (l      (read-line (socket-input client))))

  (format (socket-output client)

          "Length is: ~an" (string-length l))

  (socket-shutdown server))

Note that shutting down the server socket suffices here to close also the connection to client.

STklos procedure

(socket? obj) 

Returns #t if socket is a socket, otherwise returns #f.

STklos procedure

(socket-server? obj) 

Returns #t if socket is a server socket, otherwise returns #f.

STklos procedure

(socket-client? obj) 



Returns #t if socket is a client socket, otherwise returns #f.

STklos procedure

(socket-host-name socket) 

Returns a string which contains the name of the distant host attached to socket. If socket has been

created with make-client-socket this procedure returns the official name of the distant machine

used for connection. If socket has been created with make-server-socket, this function returns the

official name of the client connected to the socket. If no client has used yet socket, this function

returns #f.

STklos procedure

(socket-host-address socket) 

Returns a string which contains the IP number of the distant host attached to socket. If socket has

been created with make-client-socket this procedure returns the IP number of the distant machine

used for connection. If socket has been created with make-server-socket, this function returns the

address of the client connected to the socket. If no client has used yet socket, this function returns

#f.

STklos procedure

(socket-local-address socket) 

Returns a string which contains the IP number of the local host attached to socket.

STklos procedure

(socket-port-number socket) 

Returns the integer number of the port used for socket.

STklos procedure

(socket-input socket) 



(socket-output socket) 

Returns the port associated for reading or writing with the program connected with socket. Note

that this port is both textual and binary. If no connection has already been established, these

functions return #f.

The following example shows how to make a client socket. Here we create a socket on port 13 of the

machine kaolin.unice.fr 
[2]

:

(let ((s (make-client-socket "kaolin.unice.fr" 13)))

  (format #t "Time is: ~A~%" (read-line (socket-input s)))

  (socket-shutdown  s))

4.20. Signals

STklos permits to associate handlers to POSIX.1 signals. When a signal handler is called, the integer

value of this signal is passed to it as (the only) parameter.

The following POXIX.1 values for signal numbers are defined: SIGABRT SIGALRM, SIGFPE, SIGHUP,SIGILL,

SIGINT, SIGKILL, SIGPIPE, SIGQUIT, SIGSEGV, SIGTERM, SIGUSR1, SIGUSR2, SIGCHLD, SIGCONT, SIGSTOP, SIGTSTP,

SIGTTIN, SIGTTOU. Moreover, the following constants, which are often available on most systems are

also defined (if supported by the running system): SIGTRAP, SIGIOT, SIGEMT, SIGBUS, SIGSYS, SIGURG,

SIGCLD, SIGIO, SIGPOLL, SIGXCPU, SIGXFSZ, SIGVTALRM, SIGPROF, SIGWINCH, SIGLOST.

See your Unix documentation for the exact meaning of each constant or [POSIX]. Use symbolic

constants rather than their numeric value if you plan to port your program on another system.

STklos procedure

(set-signal-handler! sig handler) 

Replace the handler for integer signal sig with handler. The value of handler can be:

• #t to reset the signal handler for sig to the default system handler.

• #f to ignore the sig signal. Note that POSIX states that SIGKILL and SIGSTOP cannot be ignored or

caught.

• a one parameter procedure, which will be called when the processus receives the signal sig.

This procedure returns void.

(let ((x #f))

  (set-signal-handler! SIGUSR1

                       (lambda (i) (set! x #t)))

  (send-signal SIGUSR1)



  x)    => #t

STklos procedure

(get-signal-handler! sig) 

Return the handler for integer signal sig. The value of handler can be a boolean value or a

procedure. See primitive set-signal-handler! for more information.

STklos procedure

(send-signal sig) 

(send-signal sig pid) 

Send the integer signal sig to the process with pid process id. If the second parameter is absent, it

deaults to the one of the running program.

STklos procedure

(pause) 

Pauses the STklos process until the delivery of a signal whose action is either to execute a signal-

catching function or to terminate the process. If the action is to terminate the process, pause will not

return. If the action is to execute a signal-catching function, pause will terminate after the signal-

catching function returns.

4.21. Parameter Objects

STklos parameters correspond to the ones defined in SRFI-39 (Parameters objects). See SRFI

document for more information.

STklos procedure

(make-parameter init) 

(make-parameter init converter) 

Returns a new parameter object which is bound in the global dynamic environment to a cell

containing the value returned by the call (converter init). If the conversion procedure converter is
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not specified the identity function is used instead.

The parameter object is a procedure which accepts zero or one argument. When it is called with no

argument, the content of the cell bound to this parameter object in the current dynamic

environment is returned. When it is called with one argument, the content of the cell bound to this

parameter object in the current dynamic environment is set to the result of the call (converter arg),

where arg is the argument passed to the parameter object, and an unspecified value is returned.

(define radix

    (make-parameter 10))

(define write-shared

   (make-parameter

      #f

      (lambda (x)

        (if (boolean? x)

            x

            (error 'write-shared "bad boolean ~S" x)))))

 (radix)           =>  10

 (radix 2)

 (radix)           =>  2

 (write-shared 0)  => error

 (define prompt

   (make-parameter

     123

     (lambda (x)

       (if (string? x)

           x

           (with-output-to-string (lambda () (write x)))))))

 (prompt)       =>  "123"

 (prompt ">")

 (prompt)       =>  ">"

STklos syntax

(define-parameter var val) 

(define-parameter var val thunk) 

This form is a shortcut to define a new parameter named var. It also adds a name to the created

parameter object, which can be useful for debugging.

STklos syntax



(parameterize ((expr1 expr2) …) <body>) 

The expressions expr1 and expr2 are evaluated in an unspecified order. The value of the expr1

expressions must be parameter objects. For each expr1 expression and in an unspecified order, the

local dynamic environment is extended with a binding of the parameter object expr1 to a new cell

whose content is the result of the call (converter val), where val is the value of expr2 and converter

is the conversion procedure of the parameter object. The resulting dynamic environment is then

used for the evaluation of <body> (which refers to the R
5
RS grammar nonterminal of that name). The

result(s) of the parameterize form are the result(s) of the <body>.

(radix)                                              =>  2

(parameterize ((radix 16)) (radix))                  =>  16

(radix)                                              =>  2

(define (f n) (number->string n (radix)))

(f 10)                                               =>  "1010"

(parameterize ((radix 8)) (f 10))                    =>  "12"

(parameterize ((radix 8) (prompt (f 10))) (prompt))  =>  "1010"

STklos procedure

(parameter? obj) 

Returns #t if obj is a parameter object, otherwise returns #f.

4.22. Misc

STklos procedure

(gc) 

Force a garbage collection step.

STklos procedure

(void) 

(void arg1 …) 



Returns the special void object. If arguments are passed to void, they are evalued and simply

ignored.

STklos procedure

(void? obj) 

Returns #t if obj is #void, and #f otherwise. The usual "unspecified" result in Scheme standard and

in SRFIs is #void in STklos, and it is also returned by the procedure void.

(void? (void))                    => #t

(define x (if #f 'nope))

(void? x)                         => #t

(void? '())                       => #f

(void? 'something)                => #f

(void? (for-each print '(1 2 3))) => #t

R
7
RS procedure

(error str obj …) 

(error name str obj …) 

error is used to signal an error to the user. The second form of error takes a symbol as first

parameter; it is generally used for the name of the procedure which raises the error.



R
7
RS permits only the fist form of call. Using a symbol as first parameter is STklos

specific. Furthermore, the specification string may follow the tilde conventions of

format (see primitive format); in this case this procedure builds an error message

according to the specification given in str. Otherwise, this procedure is in

conformance with the error procedure defined in SRFI-23 (Error reporting

mechanism) and str is printed with the display procedure, whereas the obj

parameters are printed with the write procedure.

Hereafter, are some calls of the error procedure using a formatted string

(error "bad integer ~A" "a")

                     |- bad integer a

(error 'vector-ref "bad integer ~S" "a")

                     |- vector-ref: bad integer "a"

(error 'foo "~A is not between ~A and ~A" "bar" 0 5)

                     |- foo: bar is not between 0 and 5
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and some conform to SRFI-23

(error "bad integer" "a")

                    |- bad integer "a"

(error 'vector-ref "bad integer" "a")

                   |- vector-ref: bad integer "a"

(error "bar" "is not between" 0 "and" 5)

                   |- bar "is not between" 0 "and" 5

STklos procedure

(signal-error cond str obj …) 

(signal-error cond name str obj …) 

This procedure is similar to error, except that the type of the error can be passed as the first

parameter. The type of the error must be a condition which inherits from &error-message.

Note that (error arg …) is equivalent to

(signal-error &error-message arg ...)

R
7
RS syntax

(syntax-error message arg1 …) 

(syntax-error who message arg1 …) 

Syntax-error behaves similarly to error except that it signals the error as soon as syntax-error is

expanded. This can be use in macros to signal errors at compile time, without interrupting the

compilation process. In interactive mode, under the REPL, syntax-error yields a true error.


R

7
RS defines only the first form of call (with a string as first parameter). STklos

permits to use a symbol as first parameter to specify the location of the syntax

error. It also permits the usage of tilde conventions as the error primitive.

R
7
RS procedure

(read-error? obj) 

(file-error? obj) 

Error type predicates. Returns #t if obj is an object raised by the read procedure or by the inability
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to open an input or output port on a file, respectively. Otherwise, it returns #f.

R
7
RS procedure

(error-object? obj ) 

Returns #t if obj is an object created by error. Otherwise, it returns #f.

R
7
RS procedure

(error-object-message error-object) 

Returns the message encapsulated by error-object.

R
7
RS procedure

(error-object-irritants error-object) 

Returns the message encapsulated by error-object.

STklos procedure

(error-object-location error-object) 

Returns the location encapsulated by error-object if it exists. Returns #f otherwise. The location

corresponds generally to the name of the procedure which raised the error.

(guard (cnd

         (else (error-object-location cnd)))

  (error 'foo "error message"))  => foo

STklos syntax

(require-extension <clause> …) 

The syntax of require-extension is as follows:



(require-extension <clause> ...)

A clause may have the form:

1. (srfi number …)

2. (identifier …)

3. identifier

In the first form the functionality of the indicated SRFIs are made available in the context in which

the require-extension form appears. For instance,

(require-extension (srfi 1 2)) ; Make the SRFI 1 and 2 available

This form is compatible with SRFI-55 (Require-extension).

The second and third forms are STklos extensions. If the form is a list, it is equivalent to an import.

That is,

(require-extension (streams primitive) (streams derived))

is equivalent to

(import (streams primitive) (streams derived))

The final form permits to use symbolic names for requiring some extensions. For instance,

(require-extension lists and-let*)

is equivalent to the requiring srfi-1 and srfi-2.

A list of available symbolic names for features is given in Chapter 13.

STklos procedure

(require-feature feature) 

This primitive ensures that the feature (in sense of SRFI-0 feature) can be used. In particular, it

eventually requires the loading of the files needed to used feature. The feature can be expressed as

a string or a symbol, If feature is an integer n, it is equivalent to srfi-n. Consequently, to use SRFI-1

the following forms are equivalent:
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(require-feature 'srfi-1)

(require-feature "srfi-1")

(require-feature 1)

(require-feature 'lists)      ;; Since this feature name is an alias for SRFI-1

See also Chapter 13 for more information.

STklos syntax

(assume obj …) 

The special form assume is defined in SRFI-145 (Assumptions). When STklos is in debug mode, this

special form is an expression that evaluates to the value of obj if obj evaluates to a true value and it

is an error if obj evaluates to a false value.

When STklos is not in debug mode, the call to assume is elided.

STklos procedure

(version-alist) 

This function returns an association list of STklos properties as defined by SRFI-176 (Version flag).

STklos procedure

(apropos obj) 

(apropos/alist obj) 

(apropos/pp obj) 

(apropos obj module …) 

(apropos/alist obj module …) 

(apropos/pp obj module …) 

These procedures return the symbols whose print name contains the characters of obj as a

substring, in the specified modules. The given obj can be a string or symbol, and each module

argument can be a symbol, a string, or the module itself.

• If no module is provided, the current module is used.

• If modules are given, then these modules are searched.

• If only a single #t argument is given for a module, then all matching symbols from all loaded

modules will be searched.
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The apropos command returns the symbols that can be used in a given module, that is:

• it returns the symbols defined or imported if the module is the current module.

• it returns the symbols exported by the module, if this module it is not the current one.

The three variants of apropos are:

• apropos returns a flat list of symbols, and no information about the modules where they are

defined.

• apropos/alist returns an association list where the key is a module name (as a symbol) and the

data is a list of matched symbols which can be accessed from the given module.

• apropos/pp does not have a return value, but prints the symbols on the screen, categorized by

module.

Note that using #t will bring the same symbols in several different modules, since modules (as

opposed to libraries) inherit all bindings in the STklos module.

(define-library (A)

  (export zeta-one zeta-two zeta-three)

  (begin (define zeta-one 1)

         (define zeta-two 2)

         (define theta-three 3)))

(define-library (B)

  (export zeta-two zeta-three theta-four) ; but not zed

  (begin (define zeta-two 2)

         (define zeta-three 3)

         (define theta-four 4)

         (define zed 5)))

(define-library (C)

  (export zee)

  (import (B))

  (begin (define zee -1)))

(apropos/alist 'zeta

               'A                      ; a symbol (module name)

               (find-module 'B))       ; and a module

         => ( (A (zeta-one zeta-three zeta-two))

              (B (zeta-three zeta-two)) )

(apropos/pp 'zeta

               "A"                     ; a string (module name)

               'B)                     ; a symbol (module name)

         => void

And outputs, to the current output port, the following:

Module A:

   zeta-one

   zeta-three

   zeta-two

Module B:



   zeta-three

   zeta-two

(apropos "x" (find-module 'A))         ; obj is a string

         => ()                         ; no symbol found

(apropos 'o '(B))                      ; module name can be a list

         => (theta-four zeta-two)      ; simple list returned by apropos

(apropos/alist 'a #t)

         => <all symbols with "a" in their names exported by all modules>

STklos procedure

(help obj) 

(help) 

When called with an argument, help tries to give some help on the given object, which could be a

symbol, a procedure, a generic function or a method. Whe called called without arguments, help

enters a read-help-print loop. The documentation for an object is searched in the object itself or, if

absent, in STklos documentation. Inserting the documentation in an objet is very similar to Emacs

docstrings: a documentation string is defined among the code. Exemples of such strings are given

below

(define (foo n)

  "If the function body starts with a string, it's a docstring"

  (+ n 1))

(define-generic bar

  :documentation "Generic function docsting for bar")

(define-method bar ((x <integer>))

  "Probably less useful: as in functions, methods can have docstrings"

  (- x 1))

STklos procedure

(describe obj) 

Shows a brief description of obj. If the object is structured such as a struct, class or instance, some

information about its internal structure will be shown.

Using describe on simple values



(describe 10)

  10 is a fixnum integer number (#xa #o12 #b1010).

(describe 5.4)

  5.4 is a real.

(describe 2+3i)

  2+3i is a complex number.

(describe #\é)

  #\é is a character whose Unicode code point is 233.

Using describe on a class

(describe <integer>)

  <integer> is a class. It's an instance of <class>.

  Superclasses are:

      <rational>

  (No direct slot)

  Directs subclasses are:

      <fixnum>

      <bignum>

  Class Precedence List is:

      <integer>

      <rational>

      <real>

      <complex>

      <number>

      <top>

  (No direct method)

Using describe on structures

(define-struct person name email)

(define one (make-person "Some One" "one@domain.org"))

(describe person)

  #[struct-type person 139786494092352] is a structure type whose name is person.

  Parent structure type: #f

  Slots are:

       name

       email

(describe one)

  #[struct person 139786494288064] is an instance of the structure type person.

  Slots are:

       name = "Some One"



       email = "one@domain.org"

STklos procedure

(default-browser) 

(default-browser str) 

This parameter object denotes the name of the browser used by STklos to open URLs. The value of

this parameter is set at initialization time to (in that order):

• the value of the shell variable STKLOS_BROWSER, if it is set, or

• the value of the shell variable BROWSER, if it is set, or

• the string "open" on macOS, or "xdg-open" on other OS.

STklos procedure

(open-in-browser url) 

Opens the URL given by the string url in the default browser, which is determined by the string

contained in the parameter default-browser.

STklos procedure

(manual) 

(manual entry) 

Opens the STklos manual in a browser. If the symbol or the string entry is given, the manual is

opened on the description of entry. NOTE: If the HTML manual file is not installed, the

documentation is searched on the STklos web site, which can incur a non-negligible response time.

NOTE: another name for this function is man.

STklos syntax

(trace f-name …) 

Invoking trace with one or more function names causes the functions named to be traced.

Henceforth, whenever such a function is invoked, information about the call and the returned

values, if any, will be printed on the current error port.



Calling trace with no argument returns the list of traced functions.

STklos syntax

(untrace f-name …) 

Invoking untrace with one or more function names causes the functions named not to be traced

anymore.

Calling untrace with no argument will untrace all the functions currently traced.

STklos procedure

(pretty-print sexpr :key port width) 

(pp sexpr :key port width) 

This function tries to obtain a pretty-printed representation of sexpr. The pretty-printed form is

written on port with lines which are no more long than width characters. If port is omitted if

defaults to the current error port. As a special convention, if port is #t, output goes to the current

output port and if port is #f, the output is returned as a string by pretty-print. Note that pp is

another name for pretty-print.

STklos procedure

(procedure-formals proc) 

Returns the formal parameters of procedure proc. Note that procedure formal parameters are kept

in memory only if the compiler flag <<"compiler:keep-formals">> is set at its creation. If proc formal

parameters are not available, procedure-formals returns #f.

(compiler:keep-formals #t)

(define (f x y) (+ (* 3 x) y))

(procedure-formals f)           => (x y)

STklos procedure

(procedure-source proc) 



Returns the source form used to define procedure proc. Note that procedure source is kept in

memory only if the compiler flag <<"compiler:keep-source">> is set at its creation. If proc source is

not available, procedure-source returns #f.

(compiler:keep-source #t)

(define (f x y) (+ (* 3 x) y))

(procedure-source f)           => (lambda (x y) (+ (* 3 x) y))

STklos procedure

(ansi-color e1 e2 … en) 

ansi-color permits to build a string which embeds ANSI codes to colorize texts on a terminal. Each

expression ei must be a string, a symbol or an integer.

Strings constitute the message to be displayed.

A symbol can designate

• a color in the set {black, red, green, yellow, blue, magenta, cyan, white} for foreground colors

• a color in the set {bg-black, bg-red, bg-green, bg-yellow, bg-blue, bg-magenta, bg-cyan, bg-white} for

background colors.

• a qualifier such as normal, bold, italic, underline, blink, reverse or no-bold, no-italic, no-

underline, no-blink, no-reverse.

Integer values can be used for terminals which are able to display 256 colors. If the number is

positive, it is used as a foreground color. Otherwise, it is uses as a background color. Note that not

all the terminals are able to use more than eight colors.

For instance,

(display (ansi-color "a word in "

                     'bold 'red "RED" 'normal

                     " and another in "

                     'reverse 'blue "BLUE" 'normal))

will display the words BLUE and RED in color.

STklos procedure

(disassemble proc) 



(disassemble proc port) 

This function prints on the given port (by default the current output port) the instructions of

procedure proc. The printed code uses an ad-hoc instruction set that should be quite

understandable.

(define (fact n)

  (if (< n 2)

      1

      (* n (fact (- n 1)))))

The call (disassemble fact) will produce the following output:

   000:  LOCAL-REF0-PUSH

   001:  SMALL-INT            2

   003:  JUMP-NUMGE           2  ;; ==> 007

   005:  IM-ONE

   006:  RETURN

   007:  LOCAL-REF0-PUSH

   008:  PREPARE-CALL

   009:  LOCAL-REF0

   010:  IN-SINT-ADD2         -1

   012:  PUSH-GREF-INVOKE     0 1

   015:  IN-MUL2

   016:  RETURN


The code of a procedure may be patched after the first execution of proc to

optimize it.

If proc is an anonymous function, you can use the special notation #pxxx to disassemble it: *

(disassemble #p7fee1dd82f80)  ;; (address-of (lambda() 42))

      000:  SMALL-INT            42

      002:  RETURN

STklos procedure

(disassemble-expr sexpr) 

(disassemble-expr sexpr show-consts) 

(disassemble-expr sexpr show-consts port) 

This function prints on the given port (by default the current output port) the instructions of the

given sexpr. If show-consts is true, the table of the contants used in sexpr is also printed.



(disassemble-expr '(begin

                      (define x (+ y 10))

                      (cons x y))

                    #t)

will print:

000:  GLOBAL-REF           0

002:  IN-SINT-ADD2         10

004:  DEFINE-SYMBOL        1

006:  GLOBAL-REF-PUSH      1

008:  GLOBAL-REF           0

010:  IN-CONS

011:

Constants:

0: y

1: x

STklos procedure

(uri-parse str) 

Parses the string str as an RFC-2396 URI and return a keyed list with the following components

• scheme : the scheme used as a string (defaults to "file")

• user: the user information (generally expressed as login:password)

• host : the host as a string (defaults to "")

• port : the port as an integer (0 if no port specified)

• path : the path

• query : the qury part of the URI as a string (defaults to the empty string)

• fragment : the fragment of the URI as a string (defaults to the empty string)

(uri-parse "https://stklos.net")

   => (:scheme "https" :user "" :host "stklos.net" :port 443

        :path "/" :query "" :fragment "")

(uri-parse "https://stklos.net:8080/a/file?x=1;y=2#end")

    => (:scheme "http" :user "" :host "stklos.net" :port 8080

        :path "/a/file" :query "x=1;y=2" :fragment "end")

(uri-parse "http://foo:secret@stklos.net:2000/a/file")



    => (:scheme "http" :user "foo:secret" :host "stklos.net"

        :port 2000  :path "/a/file" :query "" :fragment "")

(uri-parse "/a/file")

   => (:scheme "file" :user "" :host "" :port 0 :path "/a/file"

       :query "" :fragment "")

(uri-parse "")

   => (:scheme "file"  :user "" :host "" :port 0 :path ""

       :query "" :fragment "")

STklos procedure

(string→html str) 

This primitive is a convenience function; it returns a string where the HTML special chars are

properly translated. It can easily be written in Scheme, but this version is fast.

(string->html "Just a <test>")

   => "Just a &lt;test&gt;"

STklos procedure

(md5sum obj) 

Return a string contening the md5 sum of obj. The given parameter can be a string or an open input

port.

STklos procedure

(md5sum-file str) 

Return a string contening the md5 sum of the file whose name is str.

STklos procedure

(base64-encode in) 

(base64-encode in out) 



Encode in Base64 the characters from input port in to the output port out. If out is not specified, it

defaults to the current output port.

(with-input-from-string "Hello"

  (lambda ()

    (with-output-to-string

      (lambda ()

        (base64-encode (current-input-port)))))) => "SGVsbG8="

STklos procedure

(base64-decode in) 

(base64-decode in out) 

Decode the Base64 characters from input port in to the output port out. If out is not specified, it

defaults to the current output port.

(with-input-from-string "SGVsbG8="

  (lambda ()

    (with-output-to-string

      (lambda ()

        (base64-decode (current-input-port))))))  => "Hello"

STklos procedure

(base64-encode-string str) 

Return a string contening the contents of str converted to Base64 encoded format.

STklos procedure

(base64-decode-string str) 

Decode the contents of str expressed in Base64.

[1] Under Unix, you can simply connect to a listening socket with the telnet of netcat command. For the given example, this can be

achieved with netcat localhost 12345

[2] Port 13, if open, can be used for testing: making a connection to it permits to know the distant system’s idea of the time of day.



Chapter 5. Regular Expressions

STklos uses the Philip Hazel’s Perl-compatible Regular Expression (PCRE) library for implementing

regexps [PCRE]. Consequently, the STklos regular expression syntax is the same as PCRE, and Perl

by the way.

The following text is extracted from the PCRE package. However, to make things shorter, some of

the original documentation as not been reported here. In particular some possibilities of PCRE have

been completely occulted (those whose description was too long and which seems (at least to me),

not too important). Read the documentation provided with PCRE for a complete description

footnote{The latest release of PCRE is available from http://www.pcre.org/.

A regular expression is a pattern that is matched against a subject string from left to right. Most

characters stand for themselves in a pattern, and match the corresponding characters in the

subject. As a trivial example, the pattern

The quick brown fox

matches a portion of a subject string that is identical to itself. The power of regular expressions

comes from the ability to include alternatives and repetitions in the pattern. These are encoded in

the pattern by the use of meta-characters, which do not stand for themselves but instead are

interpreted in some special way.

There are two different sets of meta-characters: those that are recognized anywhere in the pattern

except within square brackets, and those that are recognized in square brackets. Outside square

brackets, the meta-characters are as follows:

general escape character with several uses

^ assert start of subject (or line, in multiline mode)

$ assert end of subject (or line, in multiline mode)

. match any character except newline (by default)

[ start character class definition

| start of alternative branch

( start subpattern

) end subpattern

? 0 or 1 quantifier

* 0 or more quantifier

+ 1 or more quantifier

{ start min/max quantifier

Part of a pattern that is in square brackets is called a "character class". In a character class the only

meta-characters are:

http://www.pcre.org/


general escape character

^ negate the class, but only if the first character

- indicates character range

[ POSIX character class (only if followed by POSIX

syntax)

] terminates the character class

The following sections describe the use of each of the meta-characters.

5.1. Backslash

The backslash character has several uses. Firstly, if it is followed by a non-alphameric character, it

takes away any special meaning that character may have. This use of backslash as an escape

character applies both inside and outside character classes.

For example, if you want to match a  character, you write in the pattern. This escaping action

applies whether or not the following character would otherwise be interpreted as a meta-character,

so it is always safe to precede a non-alphameric with backslash to specify that it stands for itself. In

particular, if you want to match a backslash, you write \.

If you want to remove the special meaning from a sequence of characters, you can do so by putting

them between Q and E. This is different from Perl in that $ and @ are handled as literals in Q…E

sequences in PCRE, whereas in Perl, `$ and @ cause variable interpolation. Note the following

examples:

Pattern PCRE matches Perl matches

Qabc$xyzE abc$xyz abc followed by the contents of

$xyz

Qabc$xyzE abc$xyz abc$xyz

QabcE$QxyzE abc$xyz abc$xyz

The Q…E sequence is recognized both inside and outside character classes.

A second use of backslash provides a way of encoding non-printing characters in patterns in a

visible manner. There is no restriction on the appearance of non-printing characters, apart from

the binary zero that terminates a pattern, but when a pattern is being prepared by text editing, it is

usually easier to use one of the following escape sequences than the binary character it represents:

a alarm, that is, the BEL character (hex 07)

cx control-x, where x is any character

e escape (hex 1B)

f formfeed (hex 0C)

n newline (hex 0A)



r carriage return (hex 0D)

t tab (hex 09)

ddd character with octal code ddd, or backreference

xhh character with hex code hh

The precise effect of x is as follows: if x is a lower case letter, it is converted to upper case. Then bit 6

of the character (hex 40) is inverted. Thus cz becomes hex 1A, but c{ becomes hex 3B, while c;

becomes hex 7B.

The handling of a backslash followed by a digit other than 0 is complicated. Outside a character

class, PCRE reads it and any following digits as a decimal number. If the number is less than 10, or

if there have been at least that many previous capturing left parentheses in the expression, the

entire sequence is taken as a back reference. A description of how this works is given later,

following the discussion of parenthesized subpatterns.

The third use of backslash is for specifying generic character types:

d any decimal digit

D any character that is not a decimal digit

s any whitespace character

S any character that is not a whitespace character

w any word character

W any non-word character

Each pair of escape sequences partitions the complete set of characters into two disjoint sets. Any

given character matches one, and only one, of each pair.

For compatibility with Perl, s does not match the VT character (code 11). This makes it different

from the the POSIX "space" class. The s characters are HT (9), LF (10), FF (12), CR (13), and space

(32).

A word character is any letter or digit or the underscore character, that is, any character which can

be part of a Perl word. The definition of letters and digits is controlled by PCRE’s character tables,

and may vary if locale-specific matching is taking place. For example, in the "fr" (French) locale,

some character codes greater than 128 are used for accented letters, and these are matched by w.

These character type sequences can appear both inside and outside character classes. They each

match one character of the appropriate type. If the current matching point is at the end of the

subject string, all of them fail, since there is no character to match.

The fourth use of backslash is for certain simple assertions. An assertion specifies a condition that

has to be met at a particular point in a match, without consuming any characters from the subject

string. The use of subpatterns for more complicated assertions is described below. The backslashed

assertions are

b matches at a word boundary



B matches when not at a word boundary

A matches at start of subject

Z matches at end of subject or before newline at

end

z matches at end of subject

G matches at first matching position in subject

These assertions may not appear in character classes (but note that b has a different meaning,

namely the backspace character, inside a character class).

A word boundary is a position in the subject string where the current character and the previous

character do not both match w or W (i.e. one matches w and the other matches W), or the start or end

of the string if the first or last character matches w, respectively.

The A, Z, and z assertions differ from the traditional circumflex and dollar (described below) in that

they only ever match at the very start and end of the subject string, whatever options are set. Thus,

they are independent of multiline mode.

The backslash character has several uses. Firstly, if it is followed by a non-alphameric character, it

takes away any special meaning that character may have. This use of backslash as an escape

character applies both inside and outside character classes.

For example, if you want to match a "" character, you write "\" in the pattern. This applies

whether or not the following character would otherwise be interpreted as a meta-character, so it is

always safe to precede a non-alphameric with “`" to specify that it stands for itself. In particular, if

you want to match a backslash, you write "`\”.

5.2. Circumflex and Dollar

Outside a character class, in the default matching mode, the circumflex character is an assertion

which is true only if the current matching point is at the start of the subject string. Inside a

character class, circumflex has an entirely different meaning (see below).

Circumflex need not be the first character of the pattern if a number of alternatives are involved,

but it should be the first thing in each alternative in which it appears if the pattern is ever to match

that branch. If all possible alternatives start with a circumflex, that is, if the pattern is constrained

to match only at the start of the subject, it is said to be an "anchored" pattern. (There are also other

constructs that can cause a pattern to be anchored.)

A dollar character is an assertion which is true only if the current matching point is at the end of

the subject string, or immediately before a newline character that is the last character in the string

(by default). Dollar need not be the last character of the pattern if a number of alternatives are

involved, but it should be the last item in any branch in which it appears. Dollar has no special

meaning in a character class.

The meanings of the circumflex and dollar characters are changed if the multiline option is set.

When this is the case, they match immediately after and immediately before an internal newline



character, respectively, in addition to matching at the start and end of the subject string. For

example, the pattern ^abc$ matches the subject string "defnabc" in multiline mode, but not

otherwise.

Note that the sequences A, Z, and z can be used to match the start and end of the subject in both

modes, and if all branches of a pattern start with A it is always anchored, whether multiline is set or

not.

5.3. Full Stop (period, dot)

Outside a character class, a dot in the pattern matches any one character in the subject, including a

non-printing character, but not (by default) newline. If the dotall option is set, dots match newlines

as well. The handling of dot is entirely independent of the handling of circumflex and dollar, the

only relationship being that they both involve newline characters. Dot has no special meaning in a

character class.

5.4. Square Brackets

An opening square bracket introduces a character class, terminated by a closing square bracket. A

closing square bracket on its own is not special. If a closing square bracket is required as a member

of the class, it should be the first data character in the class (after an initial circumflex, if present)

or escaped with a backslash.

A character class matches a single character in the subject. A matched character must be in the set

of characters defined by the class, unless the first character in the class definition is a circumflex, in

which case the subject character must not be in the set defined by the class. If a circumflex is

actually required as a member of the class, ensure it is not the first character, or escape it with a

backslash.

For example, the character class [aeiou] matches any lower case vowel, while [^aeiou] matches any

character that is not a lower case vowel. Note that a circumflex is just a convenient notation for

specifying the characters which are in the class by enumerating those that are not. It is not an

assertion: it still consumes a character from the subject string, and fails if the current pointer is at

the end of the string.

When caseless matching is set, any letters in a class represent both their upper case and lower case

versions, so for example, a caseless [aeiou] matches "A" as well as "a", and a caseless [^aeiou] does

not match "A", whereas a caseful version would.

The newline character is never treated in any special way in character classes, whatever the setting

of the dotall or multiline options is. A class such as [^a] will always match a newline.

The minus (hyphen) character can be used to specify a range of characters in a character class. For

example, [d-m] matches any letter between d and m, inclusive. If a minus character is required in a

class, it must be escaped with a backslash or appear in a position where it cannot be interpreted as

indicating a range, typically as the first or last character in the class.

It is not possible to have the literal character "]" as the end character of a range. A pattern such as

[W-]46] is interpreted as a class of two characters ("W" and "-") followed by a literal string "46]", so it



would match "W46]" or "-46]". However, if the "]" is escaped with a backslash it is interpreted as the

end of range, so (W]46) is interpreted as a single class containing a range followed by two separate

characters. The octal or hexadecimal representation of "]" can also be used to end a range.

Ranges operate in the collating sequence of character values. They can also be used for characters

specified numerically, for example [000-037].

If a range that includes letters is used when caseless matching is set, it matches the letters in either

case. For example, [W-c] is equivalent to [][^_`wxyzabc], matched caselessly, and if character tables

for the "fr" locale are in use, [xc8-xcb] matches accented E characters in both cases.

The character types d, D, s, S, 'w`, and W may also appear in a character class, and add the characters

that they match to the class. For example, [dABCDEF] matches any hexadecimal digit. A circumflex

can conveniently be used with the upper case character types to specify a more restricted set of

characters than the matching lower case type. For example, the class [^W_] matches any letter or

digit, but not underscore.

All non-alphameric characters other than `, `-, ^ (at the start) and the terminating ] are non-

special in character classes, but it does no harm if they are escaped.

5.5. POSIX character classes

Perl supports the POSIX notation for character classes, which uses names enclosed by [: and :]

within the enclosing square brackets. STklos , thanks to PCRE, also supports this notation. For

example,

[01[:alpha:]%]

matches "0", "1", any alphabetic character, or "%". The supported class names are

alnum letters and digits

alpha letters

ascii character codes 0 - 127

blank space or tab only

cntrl control characters

digit decimal digits (same as d

graph printing characters, excluding space

lower lower case letters

print printing characters, including space

punct printing characters, excluding letters and digits

space white space (not quite the same as s)

upper upper case letters

word" word characters (same as w)



xdigit hexadecimal digits

The space characters are HT (9), LF (10), VT (11), FF (12), CR (13), and space (32). Notice that this list

includes the VT character (code 11). This makes "space" different to $backslash$s, which does not

include VT (for Perl compatibility).

The name word is a Perl extension, and blank is a GNU extension from Perl 5.8. Another Perl

extension is negation, which is indicated by a ^ character after the colon. For example,

[12[:^digit:]]

matches "1", "2", or any non-digit. STklos (and Perl) also recognize the POSIX syntax [.ch.] and

[=ch=] where "ch" is a "collating element", but these are not supported, and an error is given if they

are encountered.

5.6. Vertical Bar

Vertical bar characters are used to separate alternative patterns. For example, the pattern

gilbert|sullivan

matches either "gilbert" or "sullivan". Any number of alternatives may appear, and an empty

alternative is permitted (matching the empty string). The matching process tries each alternative in

turn, from left to right, and the first one that succeeds is used. If the alternatives are within a

subpattern (defined below), "succeeds" means matching the rest of the main pattern as well as the

alternative in the subpattern.

5.7. Internal Option Setting

The settings of the caseless, multiline, dotall, and EXTENDED options can be changed from within

the pattern by a sequence of Perl option letters enclosed between "(?" and ")". The option letters are

i for caseless

m for multiline

s for dotall

x for extended

For example, (?im) sets caseless, multiline matching. It is also possible to unset these options by

preceding the letter with a hyphen, and a combined setting and unsetting such as (?im-sx), which

sets caseless and multiline while unsetting dotall and extended, is also permitted. If a letter appears

both before and after the hyphen, the option is unset.

When an option change occurs at top level (that is, not inside subpattern parentheses), the change

applies to the remainder of the pattern that follows. If the change is placed right at the start of a

pattern, PCRE extracts it into the global options



An option change within a subpattern affects only that part of the current pattern that follows it, so

(a(?i)b)c

matches abc and aBc and no other strings (assuming caseless is not used).By this means, options can

be made to have different settings in different parts of the pattern. Any changes made in one

alternative do carry on into subsequent branches within the same subpattern. For example,

(a(?i)b|c)

matches "ab", "aB", "c", and "C", even though when matching "C" the first branch is abandoned

before the option setting. This is because the effects of option settings happen at compile time.

There would be some very weird behaviour otherwise.

The PCRE-specific options ungreedy and extra can be changed in the same way as the Perl-

compatible options by using the characters U and X respectively. The (?X) flag setting is special in

that it must always occur earlier in the pattern than any of the additional features it turns on, even

when it is at top level. It is best put at the start.

5.8. Subpatterns

Subpatterns are delimited by parentheses (round brackets), which can be nested. Marking part of a

pattern as a subpattern does two things:

• It localizes a set of alternatives. For example, the pattern

cat(aract|erpillar|)

matches one of the words "cat", "cataract", or "caterpillar". Without the parentheses, it would match

"cataract", "erpillar" or the empty string.

• It sets up the subpattern as a capturing subpattern (as defined above). When the whole pattern

matches, that portion of the subject string that matched the subpattern is set so that it can be

used in the regexp-replace or regexp-replace-all functions. Opening parentheses are counted

from left to right (starting from 1) to obtain the numbers of the capturing subpatterns.

For example, if the string "the red king" is matched against the pattern

the ((red|white) (king|queen))

the captured substrings are "red king", "red", and "king", and are numbered 1, 2, and 3, respectively.

The fact that plain parentheses fulfil two functions is not always helpful. There are often times

when a grouping subpattern is required without a capturing requirement. If an opening

parenthesis is followed by a question mark and a colon, the subpattern does not do any capturing,



and is not counted when computing the number of any subsequent capturing subpatterns. For

example, if the string "the white queen" is matched against the pattern

the ((?:red|white) (king|queen))

the captured substrings are "white queen" and "queen", and are numbered 1 and 2. The maximum

number of capturing subpatterns is 65535, and the maximum depth of nesting of all subpatterns,

both capturing and non-capturing, is 200.

As a convenient shorthand, if any option settings are required at the start of a non-capturing

subpattern, the option letters may appear between the "?" and the ":".

Thus the two patterns

(?i:saturday|sunday)

and

(?:(?i)saturday|sunday)

match exactly the same set of strings. Because alternative branches are tried from left to right, and

options are not reset until the end of the subpattern is reached, an option setting in one branch

does affect subsequent branches, so the above patterns match "SUNDAY" as well as "Saturday".

5.9. Named Subpatterns

Identifying capturing parentheses by number is simple, but it can be very hard to keep track of the

numbers in complicated regular expressions. Furthermore, if an expression is modified, the

numbers may change. To help with the difficulty, PCRE supports the naming of subpatterns,

something that Perl does not provide. The Python syntax (?P<name>…) is used. Names consist of

alphanumeric characters and underscores, and must be unique within a pattern.

5.10. Repetition

Repetition is specified by quantifiers, which can follow any of the following items:

• a literal data character

• the . metacharacter

• the C escape sequence

• escapes such as d that match single characters

• a character class

• a back reference (see next section)

• a parenthesized subpattern (unless it is an assertion)



The general repetition quantifier specifies a minimum and maximum number of permitted

matches, by giving the two numbers in curly brackets (braces), separated by a comma. The

numbers must be less than 65536, and the first must be less than or equal to the second. For

example:

z{2,4}

matches "zz", "zzz", or "zzzz". A closing brace on its own is not a special character. If the second

number is omitted, but the comma is present, there is no upper limit; if the second number and the

comma are both omitted, the quantifier specifies an exact number of required matches. Thus

[aeiou]{3,}

matches at least 3 successive vowels, but may match many more, while

d{8}

matches exactly 8 digits. An opening curly bracket that appears in a position where a quantifier is

not allowed, or one that does not match the syntax of a quantifier, is taken as a literal character. For

example, {,6} is not a quantifier, but a literal string of four characters.

The quantifier {0} is permitted, causing the expression to behave as if the previous item and the

quantifier were not present.

For convenience (and historical compatibility) the three most common quantifiers have single-

character abbreviations:

• * is equivalent to {0,}

• + is equivalent to {1,}

• ? is equivalent to {0,1}

It is possible to construct infinite loops by following a subpattern that can match no characters with

a quantifier that has no upper limit, for example:

(a?)*

Earlier versions of Perl and PCRE used to give an error at compile time for such patterns. However,

because there are cases where this can be useful, such patterns are now accepted, but if any

repetition of the subpattern does in fact match no characters, the loop is forcibly broken.

By default, the quantifiers are "greedy", that is, they match as much as possible (up to the maximum

number of permitted times), without causing the rest of the pattern to fail. The classic example of

where this gives problems is in trying to match comments in C programs. These appear between the

sequences / and/ and within the sequence, individual * and / characters may appear. An attempt to

match C comments by applying the pattern



/*.**/

to the string

/* first command */  not comment  /* second comment */

fails, because it matches the entire string owing to the greediness of the .* item.

However, if a quantifier is followed by a question mark, it ceases to be greedy, and instead matches

the minimum number of times possible, so the pattern

/*.*?*/

does the right thing with the C comments. The meaning of the various quantifiers is not otherwise

changed, just the preferred number of matches. Do not confuse this use of question mark with its

use as a quantifier in its own right. Because it has two uses, it can sometimes appear doubled, as in

d??d

which matches one digit by preference, but can match two if that is the only way the rest of the

pattern matches.

If the ungreedy option is set (an option which is not available in Perl), the quantifiers are not greedy

by default, but individual ones can be made greedy by following them with a question mark. In

other words, it inverts the default behaviour.

When a parenthesized subpattern is quantified with a minimum repeat count that is greater than 1

or with a limited maximum, more store is required for the compiled pattern, in proportion to the

size of the minimum or maximum.

If a pattern starts with .* or .{0,} and the dotall option (equivalent to Perl’s /s) is set, thus allowing

the . to match newlines, the pattern is implicitly anchored, because whatever follows will be tried

against every character position in the subject string, so there is no point in retrying the overall

match at any position after the first. PCRE normally treats such a pattern as though it were

preceded by A.

In cases where it is known that the subject string contains no newlines, it is worth setting dotall in

order to obtain this optimization, or alternatively using ^ to indicate anchoring explicitly.

However, there is one situation where the optimization cannot be used. When .* is inside capturing

parentheses that are the subject of a backreference elsewhere in the pattern, a match at the start

may fail, and a later one succeed. Consider, for example:

(.*)abc1



If the subject is "xyz123abc123" the match point is the fourth character. For this reason, such a

pattern is not implicitly anchored.

When a capturing subpattern is repeated, the value captured is the substring that matched the final

iteration. For example, after

(tweedle[dume]{3}s*)+

has matched "tweedledum tweedledee" the value of the captured substring is "tweedledee".

However, if there are nested capturing subpatterns, the corresponding captured values may have

been set in previous iterations. For example, after

(a|(b))+

5.11. Atomic Grouping And Possessive Quantifiers

With both maximizing and minimizing repetition, failure of what follows normally causes the

repeated item to be re-evaluated to see if a different number of repeats allows the rest of the

pattern to match. Sometimes it is useful to prevent this, either to change the nature of the match, or

to cause it fail earlier than it otherwise might, when the author of the pattern knows there is no

point in carrying on.

Consider, for example, the pattern d+foo when applied to the subject line

123456bar

After matching all 6 digits and then failing to match "foo", the normal action of the matcher is to try

again with only 5 digits matching the d+ item, and then with 4, and so on, before ultimately failing.

"Atomic grouping" (a term taken from Jeffrey Friedl’s book) provides the means for specifying that

once a subpattern has matched, it is not to be re-evaluated in this way.

If we use atomic grouping for the previous example, the matcher would give up immediately on

failing to match "foo" the first time. The notation is a kind of special parenthesis, starting with (?> as

in this example:)

(?>d+)foo

This kind of parenthesis "locks up" the part of the pattern it contains once it has matched, and a

failure further into the pattern is prevented from backtracking into it. Backtracking past it to

previous items, however, works as normal.

An alternative description is that a subpattern of this type matches the string of characters that an

identical standalone pattern would match, if anchored at the current point in the subject string.

Atomic grouping subpatterns are not capturing subpatterns. Simple cases such as the above



example can be thought of as a maximizing repeat that must swallow everything it can. So, while

both d+ and d+? are prepared to adjust the number of digits they match in order to make the rest of

the pattern match, (?>d+) can only match an entire sequence of digits.

Atomic groups in general can of course contain arbitrarily complicated subpatterns, and can be

nested. However, when the subpattern for an atomic group is just a single repeated item, as in the

example above, a simpler notation, called a "possessive quantifier" can be used. This consists of an

additional + character following a quantifier. Using this notation, the previous example can be

rewritten as

d++bar

Possessive quantifiers are always greedy; the setting of the ungreedy option is ignored. They are a

convenient notation for the simpler forms of atomic group. However, there is no difference in the

meaning or processing of a possessive quantifier and the equivalent atomic group.

The possessive quantifier syntax is an extension to the Perl syntax. It originates in Sun’s Java

package.

When a pattern contains an unlimited repeat inside a subpattern that can itself be repeated an

unlimited number of times, the use of an atomic group is the only way to avoid some failing

matches taking a very long time indeed. The pattern

(D+|<d+>)*[!?]

matches an unlimited number of substrings that either consist of non-digits, or digits enclosed in

<>, followed by either ! or ?. When it matches, it runs quickly. However, if it is applied to

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

it takes a long time before reporting failure. This is because the string can be divided between the

two repeats in a large number of ways, and all have to be tried. (The example used [!?] rather than

a single character at the end, because both PCRE and Perl have an optimization that allows for fast

failure when a single character is used. They remember the last single character that is required for

a match, and fail early if it is not present in the string.) If the pattern is changed to

((?>D+)|<d+>)*[!?]

sequences of non-digits cannot be broken, and failure happens quickly.

5.12. Back References

Outside a character class, a backslash followed by a digit greater than 0 (and possibly further digits)

is a back reference to a capturing subpattern earlier (that is, to its left) in the pattern, provided

there have been that many previous capturing left parentheses.



However, if the decimal number following the backslash is less than 10, it is always taken as a back

reference, and causes an error only if there are not that many capturing left parentheses in the

entire pattern. In other words, the parentheses that are referenced need not be to the left of the

reference for numbers less than 10. See the section entitled "Backslash" above for further details of

the handling of digits following a backslash.

A back reference matches whatever actually matched the capturing subpattern in the current

subject string, rather than anything matching the subpattern itself (see below for a way of doing

that). So the pattern

(sens|respons)e and 1ibility

matches "sense and sensibility" and "response and responsibility", but not "sense and

responsibility". If caseful matching is in force at the time of the back reference, the case of letters is

relevant. For example,

((?i)rah)s+1

matches "rah rah" and "RAH RAH", but not "RAH rah", even though the original capturing

subpattern is matched caselessly.

Back references to named subpatterns use the Python syntax (?P=name). We could rewrite the above

example as follows:

(?<p1>(?i)rah)s+(?P=p1)

There may be more than one back reference to the same subpattern. If a subpattern has not

actually been used in a particular match, any back references to it always fail. For example, the

pattern

(a|(bc))2

always fails if it starts to match "a" rather than "bc". Because there may be many capturing

parentheses in a pattern, all digits following the backslash are taken as part of a potential back

reference number. If the pattern continues with a digit character, some delimiter must be used to

terminate the back reference. If the extended option is set, this can be whitespace. Otherwise an

empty comment can be used.

A back reference that occurs inside the parentheses to which it refers fails when the subpattern is

first used, so, for example, (a1) never matches. However, such references can be useful inside

repeated subpatterns. For example, the pattern

(a|b1)+



matches any number of "a"s and also "aba", "ababbaa" etc. At each iteration of the subpattern, the

back reference matches the character string corresponding to the previous iteration. In order for

this to work, the pattern must be such that the first iteration does not need to match the back

reference. This can be done using alternation, as in the example above, or by a quantifier with a

minimum of zero.

5.13. Assertions

An assertion is a test on the characters following or preceding the current matching point that does

not actually consume any characters. The simple assertions coded as b, B, A, G, Z, z, ^ and $ are

described above. More complicated assertions are coded as subpatterns. There are two kinds: those

that look ahead of the current position in the subject string, and those that look behind it.

An assertion subpattern is matched in the normal way, except that it does not cause the current

matching position to be changed. Lookahead assertions start with (?= for positive assertions and

(?! for negative assertions. For example,

w+(?=;)

matches a word followed by a semicolon, but does not include the semicolon in the match, and

foo(?!bar)

matches any occurrence of "foo" that is not followed by "bar". Note that the apparently similar

pattern

(?!foo)bar

does not find an occurrence of "bar" that is preceded by something other than "foo"; it finds any

occurrence of "bar" whatsoever, because the assertion (?!foo) is always true when the next three

characters are "bar". A lookbehind assertion is needed to achieve this effect.

If you want to force a matching failure at some point in a pattern, the most convenient way to do it

is with (?!) because an empty string always matches, so an assertion that requires there not to be

an empty string must always fail.

Lookbehind assertions start with (?⇐ for positive assertions and (?<! for negative assertions. For

example,

(?<!foo)bar

does find an occurrence of "bar" that is not preceded by "foo". The contents of a lookbehind

assertion are restricted such that all the strings it matches must have a fixed length. However, if

there are several alternatives, they do not all have to have the same fixed length. Thus



(?<=bullock|donkey)

is permitted, but

(?<!dogs?|cats?)

causes an error at compile time. Branches that match different length strings are permitted only at

the top level of a lookbehind assertion. This is an extension compared with Perl (at least for 5.8),

which requires all branches to match the same length of string. An assertion such as

(?<=ab(c|de))

is not permitted, because its single top-level branch can match two different lengths, but it is

acceptable if rewritten to use two top-level branches:

(?<=abc|abde)

The implementation of lookbehind assertions is, for each alternative, to temporarily move the

current position back by the fixed width and then try to match. If there are insufficient characters

before the current position, the match is deemed to fail.

Atomic groups can be used in conjunction with lookbehind assertions to specify efficient matching

at the end of the subject string. Consider a simple pattern such as

abcd$

when applied to a long string that does not match. Because matching proceeds from left to right,

PCRE will look for each "a" in the subject and then see if what follows matches the rest of the

pattern. If the pattern is specified as

^.*abcd$

the initial .* matches the entire string at first, but when this fails (because there is no following "a"),

it backtracks to match all but the last character, then all but the last two characters, and so on. Once

again the search for "a" covers the entire string, from right to left, so we are no better off. However,

if the pattern is written as

^(?>.*)(?<=abcd)

or, equivalently,



^.*+(?<=abcd)

there can be no backtracking for the .* item; it can match only the entire string. The subsequent

lookbehind assertion does a single test on the last four characters. If it fails, the match fails

immediately. For long strings, this approach makes a significant difference to the processing time.

Several assertions (of any sort) may occur in succession. For example,

(?<=d{3})(?<!999)foo

matches "foo" preceded by three digits that are not "999". Notice that each of the assertions is

applied independently at the same point in the subject string. First there is a check that the

previous three characters are all digits, and then there is a check that the same three characters are

not "999". This pattern does fInotfR match "foo" preceded by six characters, the first of which are

digits and the last three of which are not "999". For example, it doesn’t match "123abcfoo". A pattern

to do that is

(?<=d{3}...)(?<!999)foo

This time the first assertion looks at the preceding six characters, checking that the first three are

digits, and then the second assertion checks that the preceding three characters are not "999".

Assertions can be nested in any combination. For example,

(?<=(?<!foo)bar)baz

matches an occurrence of "baz" that is preceded by "bar" which in turn is not preceded by "foo",

while

(?<=d{3}(?!999)...)foo

is another pattern which matches "foo" preceded by three digits and any three characters that are

not "999".

Assertion subpatterns are not capturing subpatterns, and may not be repeated, because it makes no

sense to assert the same thing several times. If any kind of assertion contains capturing subpatterns

within it, these are counted for the purposes of numbering the capturing subpatterns in the whole

pattern. However, substring capturing is carried out only for positive assertions, because it does not

make sense for negative assertions.

5.14. Conditional Subpatterns

It is possible to cause the matching process to obey a subpattern conditionally or to choose between



two alternative subpatterns, depending on the result of an assertion, or whether a previous

capturing subpattern matched or not. The two possible forms of conditional subpattern are

(?(condition)yes-pattern)

(?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the no-pattern (if present) is used. If

there are more than two alternatives in the subpattern, a compile-time error occurs.

There are three kinds of condition. If the text between the parentheses consists of a sequence of

digits, the condition is satisfied if the capturing subpattern of that number has previously matched.

The number must be greater than zero. Consider the following pattern, which contains non-

significant white space to make it more readable (assume the extended option) and to divide it into

three parts for ease of discussion:

( ( )?    [^()]+    (?(1) ) )

The first part matches an optional opening parenthesis, and if that character is present, sets it as

the first captured substring. The second part matches one or more characters that are not

parentheses. The third part is a conditional subpattern that tests whether the first set of

parentheses matched or not. If they did, that is, if subject started with an opening parenthesis, the

condition is true, and so the yes-pattern is executed and a closing parenthesis is required.

Otherwise, since no-pattern is not present, the subpattern matches nothing. In other words, this

pattern matches a sequence of non-parentheses, optionally enclosed in parentheses.

If the condition is the string ®, it is satisfied if a recursive call to the pattern or subpattern has been

made. At "top level", the condition is false. This is a PCRE extension. See PCRE documentation for

recursive patterns.

If the condition is not a sequence of digits or ®, it must be an assertion. This may be a positive or

negative lookahead or lookbehind assertion. Consider this pattern, again containing non-significant

white space, and with the two alternatives on the second line:

(?(?=`(^a-z)*`(a-z))

d{2}-`(a-z){3}-d{2}  |  d{2}-d{2}-d{2} )

The condition is a positive lookahead assertion that matches an optional sequence of non-letters

followed by a letter. In other words, it tests for the presence of at least one letter in the subject. If a

letter is found, the subject is matched against the first alternative; otherwise it is matched against

the second. This pattern matches strings in one of the two forms dd-aaa-dd or dd-dd-dd, where aaa

are letters and dd are digits.

5.15. Comments

The sequence (?# marks the start of a comment which continues up to the next closing parenthesis.

Nested parentheses are not permitted. The characters that make up a comment play no part in the



pattern matching at all.

If the extended option is set, an unescaped # character outside a character class introduces a

comment that continues up to the next newline character in the pattern.

5.16. Subpatterns As Subroutines

If the syntax for a recursive subpattern reference (either by number or by name) is used outside

the parentheses to which it refers, it operates like a subroutine in a programming language. An

earlier example pointed out that the pattern

(sens|respons)e and 1ibility

matches "sense and sensibility" and "response and responsibility", but not "sense and

responsibility". If instead the pattern

(sens|respons)e and (?1)ibility

is used, it does match "sense and responsibility" as well as the other two strings. Such references

must, however, follow the subpattern to which they refer.

5.17. Regexp Procedures

This section lists the STklos functions that can use PCRE regexpr described before

STklos procedure

(string→regexp string) 

String→regexp takes a string representation of a regular expression and compiles it into a regexp

value. Other regular expression procedures accept either a string or a regexp value as the matching

pattern. If a regular expression string is used multiple times, it is faster to compile the string once to

a regexp value and use it for repeated matches instead of using the string each time.

STklos procedure

(regexp? obj) 

Regexp returns #t if obj is a regexp value created by the regexp, otherwise regexp returns #f.



STklos procedure

(regexp-match pattern str) 

(regexp-match-positions pattern str) 

These functions attempt to match pattern (a string or a regexp value) to str. If the match fails, #f is

returned. If the match succeeds, a list (containing strings for regexp-match and positions for regexp-

match-positions) is returned. The first string (or positions) in this list is the portion of string that

matched pattern. If two portions of string can match pattern, then the earliest and longest match is

found, by default.

Additional strings or positions are returned in the list if pattern contains parenthesized sub-

expressions; matches for the sub-expressions are provided in the order of the opening parentheses

in pattern.

(regexp-match-positions "ca" "abracadabra")

                 => ((4 6))

(regexp-match-positions "CA" "abracadabra")

                 => #f

(regexp-match-positions "(?i)CA" "abracadabra")

                 => ((4 6))

(regexp-match "(a*)(b*)(c*)" "abc")

                 => ("abc" "a" "b" "c")

(regexp-match-positions "(a*)(b*)(c*)" "abc")

                 => ((0 3) (0 1) (1 2) (2 3))

(regexp-match-positions "(a*)(b*)(c*)" "c")

                 => ((0 1) (0 0) (0 0) (0 1))

(regexp-match-positions "(?<=\d{3})(?<!999)foo"

                        "999foo and 123foo")

                 => ((14 17))

STklos procedure

(regexp-replace pattern string substitution) 

(regexp-replace-all pattern string substitution) 

Regexp-replace matches the regular expression pattern against string. If there is a match, the

portion of string which matches pattern is replaced by the substitution string. If there is no match,

regexp-replace returns string unmodified. Note that the given pattern could be here either a string

or a regular expression.

If pattern contains n where n is a digit between 1 and 9, then it is replaced in the substitution with

the portion of string that matched the n-th parenthesized subexpression of pattern. If n is equal to

0, then it is replaced in substitution with the portion of string that matched pattern.

Regexp-replace replaces the first occurrence of pattern in string. To replace all the occurrences of



pattern, use regexp-replace-all.

(regexp-replace "a*b" "aaabbcccc" "X")

                   => "Xbcccc"

(regexp-replace (string->regexp "a*b") "aaabbcccc" "X")

                   => "Xbcccc"

(regexp-replace "(a*)b" "aaabbcccc" "X\1Y")

                   => "XaaaYbcccc"

(regexp-replace "f(.*)r" "foobar" "\1 \1")

                   => "ooba ooba"

(regexp-replace "f(.*)r" "foobar" "\0 \0")

                   => "foobar foobar"

(regexp-replace "a*b" "aaabbcccc" "X")

                   => "Xbcccc"

(regexp-replace-all "a*b" "aaabbcccc" "X")

                   => "XXcccc"

STklos procedure

(regexp-quote str) 

Takes an arbitrary string and returns a string where characters of str that could serve as regexp

metacharacters are escaped with a backslash, so that they safely match only themselves.

(regexp-quote "cons")       => "cons"

(regexp-quote "list?")      => "list\?"

regexp-quote is useful when building a composite regexp from a mix of regexp strings and verbatim

strings.



Chapter 6. Pattern Matching

Pattern matching is a key feature of most modern functional programming languages since it

allows clean and secure code to be written. Internally, "pattern-matching forms" should be

translated (compiled) into cascades of "elementary tests" where code is made as efficient as

possible, avoiding redundant tests; STklos "pattern matching compiler" provides this 
[1]

. The code

(and documentation) included in STklos has been stolen from the Bigloo package v4.5 (the only

difference between both package is the pattern matching of structures which is absent in STklos.

The technique used is described in details in C. Queinnec and J-M. Geffroy paper [QuG92], and the

code generated can be considered optimal

The "pattern language" allows the expression of a wide variety of patterns, including:

• Non-linear patterns: pattern variables can appear more than once, allowing comparison of

subparts of the datum (through eq?)

• Recursive patterns on lists: for example, checking that the datum is a list of zero or more as

followed by zero or more `bs.

• Pattern matching on lists as well as on vectors.

6.1. The Pattern Language

The syntax for <pattern> is:

[:small]

<pattern> Matches:

<atom> the <atom>.

(kwote <atom>) any expression eq? to <atom>.

(and <pat1> … <patn>) if all of <pati> match.

(or <pat1> … …<patn>) if any of <pat1> through <patn> matches.

(not <pat>) if <pat> doesn’t match.

(? <predicate>) if <predicate> is true.

(<pat1> … <patn>) a list of n elements. Here, … is a meta-character

denoting a finite repetition of patterns.

<pat> … a (possibly empty) repetition of <pat> in a list.

#(<pat> … <patn>) a vector of n elements.

?<id> anything, and binds id as a variable.

?- anything.



<pattern> Matches:

??- any (possibly empty) repetition of anything in a

list.

???- any end of list.

Remark: and, or, not and kwote must be quoted in order to be treated as literals. This is the only

justification for having the kwote pattern since, by convention, any atom which is not a keyword is

quoted.

Explanations Through Examples

• ?- matches any s-expr.

• a matches the atom 'a.

• ?a matches any expression, and binds the variable a to this expression.

• (? integer?) matches any integer.

• (a (a b)) matches the only list '(a (a b)).

• ???- can only appear at the end of a list, and always succeeds. For instance, (a ???-) is

equivalent to (a . ?-).

• when occurring in a list, ??- matches any sequence of anything: (a ??- b) matches any list

whose car is a and last car is b.

• (a …) matches any list of `a’s, possibly empty.

• (?x ?x) matches any list of length 2 whose car is eq to its cadr.

• ((and (not a) ?x) ?x) matches any list of length 2 whose car is not eq to 'a but is eq to its cadr.

• #(?- ?- ???-) matches any vector whose length is at least 2.


??- and … patterns can not appear inside a vector, where you should use ???-

For example, #(a ??- b) or #(a…) are invalid patterns, whereas #(a ???-) is valid

and matches any vector whose first element is the atom a.

6.2. STklos Pattern Matching Facilities

Only two special forms are provided for this in STklos: match-case and match-lambda.

STklos syntax

(match-case <key> <clause> …) 

The argument key may be any expression and each clause has the form

(<pattern> <expression> ...)



A match-case expression is evaluated as follows: <key> is evaluated and the result is compared with

each successive pattern. If the <pattern> in some clause yields a match, then the <expression>s in

that clause are evaluated from left to right in an environment where the pattern variables are

bound to the corresponding subparts of <key>, and the result of the last expression in that clause is

returned as the result of the match-case expression. If no pattern in any clause matches the <key>,

then, if there is an else clause, its expressions are evaluated and the result of the last is the result of

the whole match-case expression; otherwise the result of the match-case expression is unspecified.

The equality predicate used for tests is eq?.

(match-case '(a b a)

   ((?x ?x) 'foo)

   ((?x ?- ?x) 'bar))   => bar

(match-case '(a (b c) d)

   ((?x ?y) (list 'length=2 y x))

   ((?x ?y ?z) (list 'length=3 z y x)))

                        => (length=3 d (b c) a)

STklos syntax

(match-lambda <clause> …) 

match-lambda expands into a lambda-expression expecting an argument which, once applied to an

expression, behaves exactly like a match-case expression.

((match-lambda

  ((?x ?x) 'foo)

  ((?x ?- ?x) 'bar))

 '(a b a))           => bar

[1] The "pattern matching compiler" has been written by Jean-Marie Geffroy and is part of the Manuel Serrano’s Bigloo compiler

since several years [Bigloo]



Chapter 7. Exceptions and Conditions

7.1. Exceptions

The following text is extracted from SRFI-34 (Exception Handling for Programs), from which STklos

exceptions are derived. Note that exceptions are now part of R
7
RS.

Exception handlers are one-argument procedures that determine the action the program takes

when an exceptional situation is signalled. The system implicitly maintains a current exception

handler.

The program raises an exception by invoking the current exception handler, passing to it an object

encapsulating information about the exception. Any procedure accepting one argument may serve

as an exception handler and any object may be used to represent an exception.

The system maintains the current exception handler as part of the dynamic environment of the

program, akin to the current input or output port, or the context for dynamic-wind. The dynamic

environment can be thought of as that part of a continuation that does not specify the destination

of any returned values. It includes the current input and output ports, the dynamic-wind context,

and this SRFI’s current exception handler.

STklos syntax

(with-handler <handler> <expr1> … <exprn>) 

Evaluates the sequences of expressions <expr1> to <exprn>. <handler> must be a procedure that

accepts one argument. It is installed as the current exception handler for the dynamic extent (as

determined by dynamic-wind) of the evaluations of the expressions

(with-handler (lambda (c)

                (display "Catch an error\n"))

   (display "One ... ")

   (+ "will yield" "an error")

   (display "... Two"))

       |- "One ... Catch an error"

R
7
RS procedure

(with-exception-handler <handler> <thunk>) 

This form is similar to with-handler. It uses a thunk instead of a sequence of expressions. It is

conform to SRFI-34 (Exception Handling for Programs). In fact,

http://srfi.schemers.org/srfi-34/srfi-34.html
http://srfi.schemers.org/srfi-34/srfi-34.html


(with-handler <handler> <expr1> ... <exprn>)

is equivalent to

(with-exception-handler <handler>

  (lambda () <expr1> ... <exprn>))

R
7
RS procedure

(raise obj) 

Invokes the current exception handler on obj. The handler is called in the dynamic environment of

the call to raise, except that the current exception handler is that in place for the call to with-

handler that installed the handler being called.

(with-handler (lambda (c)

             (format "value ~A was raised" c))

   (raise 'foo)

   (format #t "never printed\n"))

          => "value foo was raised"

R
7
RS procedure

(raise-continuable obj) 

Raises an exception by invoking the current exception handler on obj. The handler is called with

the same dynamic environment as the call to raise-continuable, except that: (1) the current

exception handler is the one that was in place when the handler being called was installed, and (2)

if the handler being called returns, then it will again become the current exception handler. If the

handler returns, the values it returns become the values returned by the call to raise-continuable.

(with-exception-handler

  (lambda (con)

    (cond

      ((string? con)

       (display con))

      (else

       (display "a warning has been issued")))

    42)

  (lambda ()

    (+ (raise-continuable "should be a number")



       23)))

  ;; prints should be a number

                => 65

R
7
RS procedure

(guard (<var> <clause1 > <clause2 > …) <body>) 

Evaluating a guard form evaluates <body> with an exception handler that binds the raised object to

<var> and within the scope of that binding evaluates the clauses as if they were the clauses of a

cond expression. That implicit cond expression is evaluated with the continuation and dynamic

environment of the guard expression. If every <clause>s test evaluates to false and there is no else

clause, then raise is re-invoked on the raised object within the dynamic environment of the original

call to raise except that the current exception handler is that of the guard expression.

(guard (condition

         ((assq 'a condition) => cdr)

         ((assq 'b condition)))

  (raise (list (cons 'a 42))))

         => 42

(guard (condition

         ((assq 'a condition) => cdr)

         ((assq 'b condition)))

  (raise (list (cons 'b 23))))

         => (b . 23)

(with-handler (lambda (c) (format "value ~A was raised" c))

  (guard (condition

       ((assq 'a condition) => cdr)

       ((assq 'b condition)))

      (raise (list (cons 'x 0)))))

         => "value ((x . 0)) was raised"

STklos procedure

(current-exception-handler) 

Returns the current exception handler. This procedure is defined in ,(link-srfi 18).



7.2. Conditions

The following text is extracted from SRFI-35 (Conditions), from which STklos conditions are

derived.

Conditions are values that communicate information about exceptional situations between parts of

a program. Code that detects an exception may be in a different part of the program than the code

that handles it. In fact, the former may have been written independently from the latter.

Consequently, to facilitate effective handling of exceptions, conditions must communicate as much

information as possible as accurately as possible, and still allow effective handling by code that did

not precisely anticipate the nature of the exception that occurred.

Conditions available in STklos are derived from SRFI-35 and in this SRFI two mechanisms to

enable this kind of communication are provided:

• subtyping among condition types allows handling code to determine the general nature of an

exception even though it does not anticipate its exact nature,

• compound conditions allow an exceptional situation to be described in multiple ways.

Conditions are structures with named slots. Each condition belongs to one condition type (a

condition type can be made from several condition types). Each condition type specifies a set of slot

names. A condition belonging to a condition type includes a value for each of the type’s slot names.

These values can be extracted from the condition by using the appropriate slot name.

There is a tree of condition types with the distinguished &condition as its root. All other condition

types have a parent condition type.

Conditions are implemented with STklos structures (with a special bit indicating that there are

conditions). Of course, condition types are implemented with structure types. As a consequence,

functions on structures or structures types are available on conditions or conditions types (the

contrary is not true). For instance, if C is a condition, the expression

(struct->list C)

is a simple way to see it’s slots and their associated value.

STklos procedure

(make-condition-type id parent slot-names) 

Make-condition-type returns a new condition type. Id must be a symbol that serves as a symbolic

name for the condition type. Parent must itself be a condition type. Slot-names must be a list of

symbols. It identifies the slots of the conditions associated with the condition type.

http://srfi.schemers.org/srfi-35/srfi-35.html


STklos procedure

(condition-type? obj) 

Returns #t if obj is a condition type, and #f otherwise

STklos procedure

(make-compound-condition-type id ct1 …) 

Make-compound-condition-type returns a new condition type, built from the condition types ct1, … Id

must be a symbol that serves as a symbolic name for the condition type. The slots names of the new

condition type is the union of the slots of conditions ct1 …

 This function is not defined in SRFI-34 (Exception Handling for Programs).

STklos procedure

(make-condition type slot-name value …) 

Make-condition creates a condition value belonging condition type type. The following arguments

must be, in turn, a slot name and an arbitrary value. There must be such a pair for each slot of type

and its direct and indirect supertypes. Make-condition returns the condition value, with the

argument values associated with their respective slots.

(let* ((ct (make-condition-type 'ct1 &condition '(a b)))

       (c  (make-condition ct 'b 2 'a 1)))

  (struct->list c))

     => ((a . 1) (b . 2))

STklos procedure

(condition? obj) 

Returns #t if obj is a condition, and #f otherwise

STklos procedure

http://srfi.schemers.org/srfi-34/srfi-34.html


(condition-has-type? condition condition-type) 

Condition-has-type? tests if condition belongs to condition-type. It returns #t if any of condition 's

types includes condition-type either directly or as an ancestor and #f otherwise.

 (let* ((ct1 (make-condition-type 'ct1 &condition '(a b)))

        (ct2 (make-condition-type 'ct2 ct1 '(c)))

        (ct3 (make-condition-type 'ct3 &condition '(x y z)))

        (c   (make-condition ct2 'a 1 'b 2 'c 3)))

  (list (condition-has-type? c ct1)

     (condition-has-type? c ct2)

     (condition-has-type? c ct3)))

    => (#t #t #f)

STklos procedure

(condition-ref condition slot-name) 

Condition must be a condition, and slot-name a symbol. Moreover, condition must belong to a

condition type which has a slot name called slot-name, or one of its (direct or indirect) supertypes

must have the slot. Condition-ref returns the value associated with slot-name.

(let* ((ct (make-condition-type 'ct1 &condition '(a b)))

       (c  (make-condition ct 'b 2 'a 1)))

  (condition-ref c 'b))

     => 2

STklos procedure

(condition-set! condition slot-name obj) 

Condition must be a condition, and slot-name a symbol. Moreover, condition must belong to a

condition type which has a slot name called slot-name, or one of its (direct or indirect) supertypes

must have the slot. Condition-set! change the value associated with slot-name to obj.

 Whereas condition-ref is defined in ,(srfi 35), confition-set! is not.

STklos procedure



(make-compound-condition condition0 condition1 …) 

Make-compound-condition returns a compound condition belonging to all condition types that the

conditioni belong to.

Condition-ref, when applied to a compound condition will return the value from the first of the

conditioni that has such a slot.

STklos procedure

(extract-condition condition condition-type) 

Condition must be a condition belonging to condition-type. Extract-condition returns a condition of

condition-type with the slot values specified by condition. The new condition is always allocated.

(let* ((ct1 (make-condition-type 'ct1 &condition '(a b)))

       (ct2 (make-condition-type 'ct2 ct1 '(c)))

       (c2  (make-condition ct2 'a 1 ' b 2 'c 3))

       (c1  (extract-condition c2 ct1)))

  (list (condition-has-type? c1 ct2)

     (condition-has-type? c1 ct1)))

      => (#f #t)

7.3. Predefined Conditions

STklos implements all the conditions types which are defined in SRFI-35 (Conditions) and SRFI-36

(I/O Conditions). However, the access functions which are (implicitely) defined in those SRFIs are

only available if the file "conditions" is required. This can be done with the call:

(require "conditions")

Another way to have access to the hierarchy of the SRFI-35 (Conditions) and SRFI-36 (I/O

Conditions) condition:

(require-extension conditions)

The following hierarchy of conditions is predefined:

&condition

   &message (has "message" slot)

   &serious

   &error

http://srfi.schemers.org/srfi-35/srfi-35.html
http://srfi.schemers.org/srfi-36/srfi-36.html
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      &error-message (has *message*, "location" and "backtrace" slots)

      &i/o-error

         &i/o-port-error (has a "port" slot)

            &i/o-read-error

            &i/o-write-error

            &i/o-closed-error

        &i/o-filename-error (has a "filename" slots)

            &i/o-malformed-filename-error

            &i/o-file-protection-error

                &i/o-file-is-read-only-error

            &i/o-file-already-exists-error

            &i/o-no-such-file-error

     &read-error (has the "line", "column", "position" and "span" slots)



Chapter 8. STklos Object System

8.1. Introduction

The aim of this chapter is to present STklos object system. Briefly stated, STklos gives the

programmer an extensive object system with meta-classes, multiple inheritance, generic functions

and multi-methods. Furthermore, its implementation relies on a MOP (Meta Object Protocol (MOP)

[AMOP]), in the spirit of the one defined for CLOS [CLtL2].

STklos implementation is derived from the version 1.3 of Tiny CLOS, a pure and clean CLOS-like

MOP implementation in Scheme written by Gregor Kickzales [Tiny-Clos]. However, Tiny CLOS

implementation was designed as a pedagogical tool and consequently, completeness and efficiency

were not the author concern for it. STklos extends the Tiny CLOS model to be efficient and as close

as possible to CLOS, the Common Lisp Object System [CLtL2]. Some features of STklos are also

issued from [Dylan] or [SOS].

This chapter is divided in three parts, which have a quite different audience in mind:

• The first part presents the STklos object system rather informally; it is intended to be a tutorial

of the language and is for people who want to have an idea of the look and feel of STklos.

• The second part describes the STklos object system at the external level (i.e. without requiring

the use of the Meta Object Protocol).

• The third and last part describes the STklos Meta Object Protocol. It is intended for people whio

want to play with meta programming.

8.2. Object System Tutorial

The STklos object system relies on classes like most of the current OO languages. Furthermore,

STklos provides meta-classes, multiple inheritance, generic functions and multi-methods as in

CLOS, the Common Lisp Object System [CLtL2] or [Dylan]. This chapter presents STklos in a rather

informal manner. Its intent is to give the reader an idea of the "look and feel" of STklos

programming. However, we suppose here that the reader has some basic notions of OO

programming, and is familiar with terms such as classes, instances or methods.

8.2.1. Class definition and instantiation

Class definition

A new class is defined with the define-class form. The syntax of define-class is close to CLOS

defclass:

(define-class class (superclass~1~ superclass~2~ ...)

  (slot-description1

   slot-description2

   ...)

  metaclass option)



The metaclass option will not be discussed here. The superclasses list specifies the super classes

of class (see Section 8.2.2 for details).

A slot description gives the name of a slot and, eventually, some properties of this slot (such as its

initial value, the function which permit to access its value, …). Slot descriptions will be discussed in

,(index "slot-definition").

As an example, consider now that we want to define a point as an object. This can be done with the

following class definition:

(define-class <point> ()

  (x y))

This definition binds the symbol <point> to a new class whose instances contain two slots. These

slots are called x an y and we suppose here that they contain the coordinates of a 2D point.

Let us define now a circle, as a 2D point and a radius:

(define-class <circle> (<point>)

  (radius))

As we can see here, the class <circle> is constructed by inheriting from the class <point> and adding

a new slot (the radius slot).

Instance creation and slot access

Creation of an instance of a previously defined class can be done with the make procedure. This

procedure takes one mandatory parameter which is the class of the instance which must be created

and a list of optional arguments. Optional arguments are generally used to initialize some slots of

the newly created instance. For instance, the following form:

(define  c (make <circle>))

creates a new <circle> object and binds it to the c Scheme variable.

Accessing the slots of the newly created circle can be done with the slot-ref and the slot-set!

primitives. The slot-set! primitive permits to set the value of an object slot and slot-ref permits to

get its value.

(slot-set! c 'x 10)

(slot-set! c 'y 3)

(slot-ref c 'x)       =>  10

(slot-ref c 'y)       =>  3

Using the describe function is a simple way to see all the slots of an object at one time: this function

prints all the slots of an object on the standard output. For instance, the expression:



(describe c)

prints the following information on the standard output:

#[<circle> 81aa1f8] is an an instance of class <circle>.

Slots are:

     radius = #[unbound]

     x = 10

     y = 3

Slot Definition

When specifying a slot, a set of options can be given to the system. Each option is specified with a

keyword. For instance,

• :init-form can be used to supply a default value for the slot.

• :init-keyword can be used to specify the keyword used for initializing a slot.

• :getter can be used to define the name of the slot getter

• :setter can be used to define the name of the slot setter

• :accessor can be used to define the name of the slot accessor (see below)

To illustrate slot description, we redefine here the <point> class seen before. A new definition of this

class could be:

(define-class <point> ()

  ((x :init-form 0 :getter get-x :setter set-x! :init-keyword :x)

   (y :init-form 0 :getter get-y :setter set-y! :init-keyword :y)))

With this definition,

1. the x and y slots are set to 0 by default.

2. The value of a slot can also be specified by calling make with the :x and :y keywords.

3. Furthermore, the generic functions get-x and set-x! (resp. get-y and set-y!) are automatically

defined by the system to read and write the x (resp. y) slot.

(define p1 (make <point> :x 1 :y 2))

(get-x p1)        => 1

(set-x! p1  12)

(get-x p1)        => 12

(define  p2 (make <point> :x 2))

(get-x p2)         => 2

(get-y p2)         => 0



Accessors provide an uniform access for reading and writing an object slot. Writing a slot is done

with an extended form of set! which is close to the Common Lisp setf macro. A slot accessor can be

defined with the :accessor option in the slot description. Hereafter, is another definition of our

<point> class, using an accessor:

(define-class <point> ()

  ((x :init-form 0 :accessor x-of :init-keyword :x)

   (y :init-form 0 :accessor y-of :init-keyword :y)))

Using this class definition, reading the x coordinate of the p point can be done with:

(x-of p)

and setting it to 100 can be done using the extended set!

(set! (x-of p) 100)



STklos also define slot-set! as the setter function of slot-ref. As a consequence,

we have

(set! (slot-ref p 'y) 100)

(slot-ref p 'y)       => 100

Virtual Slots

Suppose that we need slot named area in circle objects which contain the area of the circle. One

way to do this would be to add the new slot to the class definition and have an initialisation form

for this slot which takes into account the radius of the circle. The problem with this approach is that

if the radius slot is changed, we need to change area (and vice-versa). This is something which is

hard to manage and if we don’t care, it is easy to have a area and radius in an instance which are

"un-synchronized". The virtual slot mechanism avoid this problem.

A virtual slot is a special slot whose value is calculated rather than stored in an object. The way to

read and write such a slot must be given when the slot is defined with the :slot-ref and :slot-set!

slot options.

A complete definition of the <circle> class using virtual slots could be:

(define-class <circle> (<point>)

  ((radius :init-form 0 :accessor radius :init-keyword :radius)

   (area :allocation :virtual :accessor area

         :slot-ref (lambda (o) (let ((r (radius o))) (* 3.14 r r)))

         :slot-set! (lambda (o v) (set! (radius o) (sqrt (/ v 3.14)))))))



Here is an example using this definition of <circle>

(define c (make <circle> :radius 1))

(radius c)                           => 1

(area c)                             => 3.14

(set! (area x) (* 4 (area x)))

(area c)                             => 12.56   ;; (i.e. ⒋π)

(radius c)                           => 2.0

Of course, we can also used the function describe to visualize the slots of a given object. Applied to

the prvious c, it prints:

#[<circle> 81b2348] is an an instance of class <circle>.

Slots are:

     area = 12.56

     radius = 2.0

     x = 0

     y = 0

8.2.2. Inheritance

Class hierarchy and inheritance of slots

inheritance Inheritance is specified upon class definition. As said in the introduction, STklos

supports multiple inheritance. Hereafter are some classes definition:

(define-class A () (a))

(define-class B () (b))

(define-class C () (c))

(define-class D (A B) (d a))

(define-class E (A C) (e c))

(define-class F (D E) (f))

Here,

• A, B, C have a null list of super classes. In this case, the system will replace it by the list which

only contains <object>, the root of all the classes defined by define-class.

• D, E, and F use multiple inheritance: each class inherits from two previously defined classes.

Those class definitions define a hierarchy which is shown in Figure 1.



Figure 1. A class hiearchy

In this figure, the class <top> is also shown; this class is the super class of all Scheme objects. In

particular, <top> is the super class of all standard Scheme types.

The set of slots of a given class is calculated by "unioning" the slots of all its super class. For

instance, each instance of the class D defined before will have three slots (a, b and d). The slots of a

class can be obtained by the class-slots primitive. For instance,

(class-slots A) => (a)

(class-slots E) => (a e c)

(class-slots F) => (b e c d a f)

 The order of slots is not significant.

Class precedence list

A class may have more than one superclass 
[1]

.

With single inheritance (only one superclass), it is easy to order the super classes from most to least

specific. This is the rule:

Rule 1: Each class is more specific than its superclasses.

With multiple inheritance, ordering is harder. Suppose we have

(define-class X ()

   ((x :init-form 1)))



(define-class Y ()

   ((x :init-form 2)))

(define-class Z (X Y)

   (z :init-form 3))

In this case, given Rule 1, the Z class is more specific than the X or Y class for instances of Z.

However, the :init-form specified in X and Y leads to a problem: which one overrides the other? Or,

stated differently, which is the default initial value of the x slot of a Z instance. The rule in STklos,

as in CLOS, is that the superclasses listed earlier are more specific than those listed later. So:

Rule 2: For a given class, superclasses listed earlier are more specific than those listed

later.

These rules are used to compute a linear order for a class and all its superclasses, from most

specific to least specific. This order is called the "class precedence list" of the class. Given these

two rules, we can claim that the initial form for the x slot of previous example is 1 since the class X

is placed before Y in the super classes of Z. These two rules are not always sufficient to determine a

unique order. However, they give an idea of how the things work. STklos algorithm for calculating

the class precedence list of a class is a little simpler than the CLOS one described in [AMOP] for

breaking ties. Consequently, the calculated class precedence list by STklos algorithm can be

different than the one given by the CLOS one in some subtle situations. Taking the F class shown in

Figure 1, the STklos calculated class precedence list is

(F D E A B C <object> <top>)

whereas it would be the following list with a CLOS-like algorithm:

(F D E A C B <object> <top>)

However, it is usually considered a bad idea for programmers to rely on exactly what the order is.

If the order for some superclasses is important, it can be expressed directly in the class definition.

The precedence list of a class can be obtained by the function class-precedence-list. This function

returns a ordered list whose first element is the most specific class. For instance,

(class-precedence-list D)

    => (#[<class> D 81aebb8] #[<class> A 81aab88]

        #[<class> B 81aa720] #[<class> <object> 80eff90]

        #[<class> <top> 80effa8])

However, this result is hard to read; using the function class-name yields a clearer result:

(map class-name (class-precedence-list D))



  => (D A B <object> <top>)

8.2.3. Generic functions

Generic functions and methods

Neither STklos nor CLOS use the message passing mechanism for methods as most Object Oriented

languages do. Instead, they use the notion of generic function.A generic function can be seen as a

"tanker" of methods. When the evaluator requests the application of a generic function, all the

applicable methods of this generic function will be grabbed and the most specific among them will

be applied. We say that a method M is more specific than a method M' if the class of its parameters

are more specific than the M' ones. To be more precise, when a generic function must be "called"

the system

• searchs among all the generic function methods those which are applicable (i.e. the ones which

filter on types which are compatible with the actual argument list),

• sorts the list of applicable methods in the "most specific" order,

• calls the most specific method of this list (i.e. the first of the list of sorted methods).

The definition of a generic function is done with the define-generic macro. Definition of a new

method is done with the define-method macro.

Consider the following definitions:

(define-generic M)

(define-method M((a <integer>) b) 'integer)

(define-method M((a <real>)    b) 'real)

(define-method M(a b)             'top)

The define-generic call defines M as a generic function. Note that the signature of the generic

function is not given upon definition, contrarily to CLOS. This permits methods with different

signatures for a given generic function, as we shall see later. The three next lines define methods

for the M generic function. Each method uses a sequence of parameter specializers that specify

when the given method is applicable. A specializer permits to indicate the class a parameter must

belong (directly or indirectly) to be applicable. If no specializer is given, the system defaults it to

<top>>. Thus, the first method definition is equivalent to

(define-method M((a <integer>) (b <top>)) 'integer)

Now, let us look at some possible calls to generic function M:

(M 2 3)      => integer

(M 2 #t)     => integer

(M 1.2 'a)   => real

(M #t #f)    => top



(M 1 2 3)    => error (no method with 3 parameters)

The preceding methods use only one specializer per parameter list. Of course, each parameter can

use a specializer. In this case, the parameter list is scanned from left to right to determine the

applicability of a method. Suppose we declare now

(define-method M ((a <integer>) (b <number>))

    'integer-number)

(define-method M ((a <integer>) (b <real>))

    'integer-real)

(define-method M (a (b <number>))

    'top-number)

(define-method M (a b c)

    'three-parameters)

In this case, we have

(M 1 2)     => integer-integer

(M 1 1.0)   => integer-real

(M 'a 1)    => top-number

(M 1 2 3)   => three-parameters



• Before defining a new generic function define-generic, verifies if the symbol

given as parameter is already bound to a procedure in the current

environment. If so, this procedure is added, as a method to the newly created

generic function. For instance:

(define-generic log)  ; transform "log" in a generic function

(define-method log ((s <string>) . l)

   (apply format  (current-error-port) s l)

   (newline (current-error-port)))

(log "Hello, ~a" "world")      |- Hello, world

(log 1)                        => 0 ; standard "log" procedure

• define-method automatically defines the generic function if it has not been

defined before. Consequently, most of the time, the define-generic is not

needed.

Next-method

When a generic function is called, the list of applicable methods is built. As mentioned before, the



most specific method of this list is applied (see Section 8.2.3).

This method may call, if needed, the next method in the list of applicable methods. This is done by

using the special form next-method. Consider the following definitions

(define-method Test((a <integer>))

   (cons 'integer (next-method)))

(define-method Test((a <number>))

   (cons 'number  (next-method)))

(define-method Test(a)

   (list 'top))

With those definitions, we have:

(Test 1)     => (integer number top)

(Test 1.0)   => (number top)

(Test #t)    => (top)

Standard  generic functions

Printing objects

When the Scheme primitives write or display are called with a parameter which is an object, the

write-object or display-object generic functions are called with this object and the port to which

the printing must be done as parameters. This facility permits to define a customized printing for a

class of objects by simply defining a new method for this class. So, defining a new printing method

overloads the standard printing method (which just prints the class of the object and its

hexadecimal address).

For instance, we can define a customized printing for the <point> used before as:

(define-method display-object ((p <point>) port)

  (format port "<Point x=~S y=~S>" (slot-ref p 'x) (slot-ref p 'y)))

With this definition, we have

(define p (make <point> :x 1 :y 2))

(display p)                         |= <Point x=1 y=2>

The Scheme primitive write tries to write objects, in such a way that they are readable back with

the read primitive. Consequently, we can define the writing of a <point> as a form which, when

read, will build back this point:



(define-method write-object ((p <point>) port)

 (format port "#,(make <point> :x ~S :y ~S)"

              (get-x p) (get-y p)))

With this method, writing the p point defined before prints the following text on the output port:

#,(make <point> :x 1 :y 2)

Note here the usage of the #, notation of SRFI-10 (Sharp Comma External Form) used here to

"evaluate" the form when reading it. We suppose here that we are in a context where we already

defined:

(define-reader-ctor 'make (lambda l (eval `(make ,@l))))

Comparing objects

When objects are compared with the eqv? or equal? Scheme standard primitives, STklos calls the

object-eqv? or object-equal? generic functions. This facility permits to define a customized

comparison function for a class of objects by simply defining a new method for this class. Defining

a new comparison method overloads the standard comparaison method (which always returns #f).

For instance we could define the following method to compare points:

(define-method object-eqv? ((a <point>) (b <point>))

  (and (= (point-x a) (point-x b))

       (= (point-y a) (point-y b))))

8.3. Object System Main Functions and Syntaxes

8.3.1. Classes and Instances

STklos syntax

(define-class name supers slots . options) 

Creates a class whose name is name, and whose superclasses are in the list supers, with the slots

specified by the list slots.

As an example, this is the definition of a point:

(define-class <point> ()

  (x y))

http://srfi.schemers.org/srfi-10/srfi-10.html


In another example, a class <circle> that inherits <point>.

(define-class <circle> (<point>)

  (radius))

The following options can be passed to slots:

• :init-form is the default value for the slot.

• :init-keyword is the keyword for initializing the slot.

• :getter is the name of the getter method.

• :setter is the name of the setter method.

• :accessor is the name of the accessor (setter and getter) method.

For example,

(define-class <point> ()

  (x :init-form 0 :getter get-x :setter set-x! :init-keyword :x)

  (y :init-form 0 :getter get-y :setter set-y! :init-keyword :y))

STklos also defines setters for the specified getters, so the following will work with the definition of

<point> given above:

(set! (slot-ref my-point 'x) 50)

Accessors, are methods which can be used as getter and setter, as shown bellow

(define-class <circle> (<point>)

  ((radius :accessor radius :init-keyword :radius)))

(define x (make <circle> :radius 100))

(radius x)                             => 100

(set! (radius x) 200)

(radius x)                             => 200

STklos procedure

(allocate-instance c init-args) 

(initialize-instance c init-args) 

(make-instance c) 

(initialize c init-args) 

(make c) 



Make-instance creates and initializes an instance of class c. Allocate-instance is similar, but only

allocates the instance, without initializing it.

(define-class <X> () ((xx :init-form 10)))

(define my-x (make-instance <X>))

(describe my-x)

#[<X> 7fbd2e3075d0] is an an instance of class <X>.

The only slot is:

  xx = 10

(define my-other-x (allocate-instance <X> 20))

(describe y)

#[<X> 7fbd2e2bdab0] is an an instance of class <X>.

The only slot is:

  xx = #[unbound]

 make is an alias for make-instance.

Initialize is a generic function that is called by make-instance (or make) in order to initialize

instances of a class.

(define-class <x> (<object>)

  ((a :init-keyword :a)

   (b :accessor x-b)

   c))

(describe (make <x> :a 10))

#[<x> 7f8a49e96bd0] is an instance of class <x>.

Slots are:

     a = 10

     b = #[unbound]

     c = #[unbound]

If an initialize method is implemented, it overrides the default, and the initializing arguments are

not automatically processed:

(define-method initialize-instance ((x <x>) args)

  (print '== " " args)

  (set! (bb x) 1000))

(describe (make <x> :a 10))

== (a 10)

#[<x> 7f8a49e96bd0] is an instance of class <x>.

Slots are:

     a = #[unbound]



     b = 1000

     c = #[unbound]

Note that a was not initialized! This is because the new initialize method does not set it, and the

keyword initializer was ignored (the method actually printed the arguments, but ignored them).

But if next-method is called at the end of our initialize method, the result will be as expected:

(define-method initialize-instance ((x <x>) args)

  (print '== " " args)

  (set! (bb x) 1000)

  (next-method))

(describe (make <x> :a 10))

== (a 10)

#[<x> 7f8a49e96bd0] is an instance of class <x>.

Slots are:

     a = 10

     b = 1000

     c = #[unbound]

Now a has also been initialized.

 initialize is an alias for initialize-instance.

Finally, the standard make-instance is simple to write: it just calls allocate-instance and initializes it

with initialize-instance:

(define-method make-instance ((class <class>) . initargs)

  (let ((instance (allocate-instance class initargs)))

    (initialize-instance instance initargs)

    instance))

STklos procedure

(class-name c) 

Returns the name of the class c,a s a symbol.

(define-class <A> () ())

(define x (make <A>))

(class-name (class-of x)) => <A>



STklos procedure

(class-of obj) 

Return the class of object obj.

(define-class <A> () ())

(class-of (make <A>))     => #[<class> <A> 7f5dc5002a20]

(class-of #t)             => #[<class> <boolean> 7f5dc551ade0]

STklos procedure

(class-name c) 

Returns the name of the class c,a s a symbol.

(define-class <A> () ())

(define x (make <A>))

(class-name (class-of x)) => <A>

STklos procedure

(find-class name) 

(find-class name default) 

Returns the class whose name is equal to symbol name. If name is not a class instance, the default

value is returned, if present.

STklos procedure

(is-a? obj class) 

Returns #t if obj is an instance of class, and #f otherwise.

STklos procedure



(ensure-metaclass class-list) 

Given a list of classes, returns a class which is a superclass of all the classes given. This superclass

will be built so that it is a subclass of the most specific classes posible.

(define-class <A> () ())

(define-class <B> (<A>) ())

(define-class <C> () ())

(ensure-metaclass (list <B> <A>)) => #[<class> <B> 7fea2b8a3c30]

(define m (ensure-metaclass (list <B> <A> <C>)))

(class-direct-superclasses m)

  => (#[<class> <B> 7fea2b8a3c30] #[<class> <C> 7fea2b8afb40])

STklos procedure

(change-class object new-class) 

Change-class will change the class of object to new-class. The values of slots that do exist in both the

old and new classes are carried out to the new object. The slots that do not exist in the old instance

are initialized as if the object was new.

(define-class <A> ()        ((a-slot #:init-form 'a-value)))

(define-class <B> ()        ((b-slot #:init-form 'b-value)))

(define-class <C> (<A> <B>) ((c-slot #:init-form 'c-value)))

(define a (make <A>))

(define c (make <C>))

(describe a)

#[<A> 7f91fe79c660] is an instance of class <A>.

The only slot is:

     a-slot = a-value

(describe c)

#[<C> 7f91fe7a0510] is an instance of class <C>.

Slots are:

     a-slot = a-value

     b-slot = b-value

     c-slot = c-value

(change-class a <C>)

(change-class c <A>)

(describe a)



#[<C> 7f91fe79c660] is an instance of class <C>.

Slots are:

     a-slot = a-value

     b-slot = b-value

     c-slot = c-value

(describe c)

#[<A> 7f91fe7a0510] is an instance of class <A>.

The only slot is:

     a-slot = a-value

(slot-value c 'c-slot) => error

The last line shows that c really changed into an object of class <A>: it does not have the slot c-slot

anymore.

8.3.2. Generic Functions and Methods

Generic functions and methods are an important part of STklos object system. A generic function is

a function which can have several methods with a behavior which depends of the type or the

number of its parameters.

STklos procedure

(define-generic gf) 

(define-generic gf metaclass) 

(define-generic gf :documentation str) 

(define-generic gf metaclass :documentation str) 

This function creates a new generic function named gf. By default, the created function is an

instance of the class <generic>, except if metaclass is used. Using a different metaclass permits to

fine tune the way methods are applied.



Generally, it is not necessary to use define-generic to declare a generic function,

since it is created the first time a method with the name of that function is created.

However, for the sake of documentation, or to export a generic function from a

module which do not define methods, it is possible also to explicitly define the

generic function before its methods.

STklos syntax

(define-method gf args body) 

The primitive define-method creates a generic method that will be added to a generic function gf,



having arguments args and body body. Args is a list of arguments, and each argument can be either

a single symbol (the argument name) or an argument specification. In its simplest form, a generic

method behaves a lot like an ordinary procedure:

(define-method square (x)

  (* x x))

(square 10)  => 100

In the above example, x is the only argument to the method, and it is specified as a single symbol,

which means that any type of argument will be matched and this method will be used.

An argument may also be specified in the form of a list with two elements: the argument name and

its class. The method will only be applicable when its arguments are of the specified classes (or

types).

(define-method ++ ( (x <string>) (y <string>) )

  (string-append x y))

(define-method ++ ( (x <number>) (y <number>) )

  (+ x y))

(define-method ++ ( (x <string>) (y <number>) )

  (format #f (string-append x "~a") y))

(++ "abc" "def")   => "abcdef"

(++ 2 3.5)         => 5.5

(++ 2 2-3i)        => 4-3i

(++ "number: " 10) => "number: 10"

(++ 3 "wrong")     => error

In this example, three methods are added to the generic function ++, and when the generic function

is called, the appropriate method is chosen. When no method is applicable, an error is signaled.

The classes matched in the example are <string> and <number>, but any class can be used. All

Scheme types are built-in classes in STklos:

<boolean>  <null>

<char>     <object>

<class>    <pair>

<complex>  <procedure>

<eof>      <rational>

<integer>  <real>

<fixnum>   <bignum>

<list>     <symbol>

<vector>  ...



User-defined classes can also be used (and this is the main original use case for generic functions).

A very simple example follows.

(define-class <figure> ()

  ((pos-x :getter pos-x :init-keyword :pos-x)

   (pos-y :getter pos-y :init-keyword :pos-y)))

(define-class <circle> (<figure>)

  ((radius :getter radius :init-keyword :radius)))

(define-class <square> (<figure>)

  ((side :getter side :init-keyword :side)))

(define-method describe-figure ( (c <circle>) )

  (format #f "A circle at (~a, ~a), with radius ~a.~%"

          (pos-x c)

          (pos-y c)

          (radius c)))

(define-method describe-figure ( (s <square>) )

  (format #f "A square centered at (~a, ~a), with side ~a.~%"

          (pos-x s)

          (pos-y s)

          (side s)))

(define sq (make <square> :pos-x 1 :pos-y 2 :side 10))

(define ci (make <circle> :pos-x 2 :pos-y 2 :radius 5))

(describe-figure sq)

  => "A square centered at (1, 2), with side 10.n"

(describe-figure ci)

  => "A circle at (2, 2), with radius 5.n"

Generic methods can be created with different number of arguments, and that will also be one

criterion to match the method.

(define-method process (a b c) (+ a b c))

(define-method process (a b) (* a b))

(process 2 3)   => 6

(process 2 3 4) => 9

STklos procedure



(next-method) 

Inside a method, one can use the (next-method) to call the next applicable method.

(define-method class-list ((obj <integer>))  (cons 'integer  (next-method)))

(define-method class-list ((obj <rational>)) (cons 'rational (next-method)))

(define-method class-list ((obj <real>))     (cons 'real     (next-method)))

(define-method class-list ((obj <complex>))  (cons 'complex  (next-method)))

(define-method class-list ((obj <number>))   (cons 'number   (next-method)))

(define-method class-list ((obj <top>))      (list 'top))

(class-list 2.3)  => (real complex number top)

(class-list 2)    => (integer rational real complex number top)

(class-list 1-2i) => (complex number top)

STklos procedure

(method-generic-function m) 

(method-specializers m) 

(method-procedure m) 

Given a method m, * method-generic-function returns the generic function that this object is a

specialization of; * method-specializers returns a list of specializers (this and other methods) of its

generic functions; * method-procedure returns the procedure that implements this method.

(define-method compute ( (a <real>) (b <real>) )

 (* a b))

(define-method compute ( (a <real>) (b <complex>) )

  (* a (imag-part b)))

(define m (car (generic-function-methods compute)))

(method-generic-function m)

   => #[<generic> compute (2)]

(method-specializers m)

   => (#[<class> <real> 7f3e3a157ba0]

       #[<class> <complex> 7f3e3a157bd0])

(method-procedure m)

   => #[closure 7f9901d6e680]



8.3.3. Misc.

STklos procedure

(class-direct-superclasses c) 

(class-direct-subclasses c) 

(class-subclasses c) 

(class-precedence-list c) 

class-direct-superclasses and class-direct-subclasses returns a list with all direct superclasses or

subclasses of class c.

class-subclasses returns a list with all subclasses of class c, even if not direct.

class-precedence-list returns the precedence list for class c. If c is a superclass of several classes,

this list shows what precedence each superlclass has when resolving names of attributes and

methods in c.

The items returned in the list are classes. Use class-name to obtain their names.

(define-class <A> () (slot-one slot-two))

(define-class <B> () ())

(define-class <C> (<A> <B>) (slot-one))

(define-class <D> (<A>) ())

(map class-name (class-direct-superclasses <C>)) => (<A> <B>)

(map class-name (class-direct-superclasses <D>)) => (<A>)

(map class-name (class-direct-subclasses <A>))   => (<D> <C>)

(map class-name (class-precedence-list <C>))     => (<C> <A> <B> <object> <top>)

Slot-one in class <C> refers to the slot defined in <C> (because it is present in both <A> and <C>, but

<C> has precedence over <A>). Slot-two in <C> can only be the one defined in <A>.

The native STklos types are also subclasses of one single class, <top>.

(map class-name  (class-subclasses <top>))

        => (<entity-class> <procedure-class> <class> <accessor-method>

            <simple-method> <method> <generic> <object> <boolean> <char>

            ...

            <number>

            ...

            <output-port> <port> <hash-table>)

One of the listed classes above is <number> (its subclasses are also listed in that output). Calling

class-subclasses on <number> returns its six subclasses:



(map class-name (class-subclasses <number>))

        => (map class-name (class-subclasses <number>))

STklos procedure

(class-slots c) 

(class-direct-slots c) 

Class-slots returns a list of the slots in class c, including those inherited from other classes.

(class-slots <A>) => ((a #:init-form 1) (b #:init-form 2))

(class-slots <C>) => ((b #:init-form 2) (a #:init-form 3))

Class-direct-slots returns a list with the names of the slots that were defined directly in the class

(excluding the inherited slots).

(class-direct-slots <B>) => ((a #:init-form 3))

R
5
RS procedure

(class-methods c) 

(class-direct-methods c) 

Class-direct-methods returns a list of all direct methods of a class.

Class-methods returns a list of all methods of a class and also of its subclasses.

(define-class <A> () ())

(define-method method-A ((a <A>)) (print 'A))

(define-class <C> (<A>) ())

(define-method method-C ((c <C>)) (print 'C))

(class-methods <C>)

(map method-generic-function (class-methods <A>))

    => (#[<generic> method-C (1)]

        #[<generic> method-A (1)])

(map method-generic-function (class-direct-methods <A>))

    => (#[<generic> method-A (1)])



STklos procedure

(class-slot-definition c s) 

Class-slot-definition returns the definition of slot s in class c.

(define-class <A> ()

  ((slot-one :init-form 'none :getter get-one)

   (slot-two :init-form 'nada :init-keyword :two)))

(class-slot-definition <A> 'slot-two)

  => (slot-two #:init-form 'nada #:init-keyword #:two)

(class-slots <A>)

  => ((slot-one #:init-form 'none #:getter get-one)

      (slot-two #:init-form 'nada #:init-keyword #:two))

STklos procedure

(slot-definition-name s) 

(slot-definition-options s) 

(slot-definition-allocation s) 

(slot-definition-getter s) 

(slot-definition-setter s) 

(slot-definition-accessor s) 

(slot-definition-init-form s) 

(slot-definition-init-keyword s) 

These procedures operate on slot definitions (the lists included in class definitions). They return the

slot name, the list of options, the slot allocation, and the getter, setter, accessor, init-form and init-

keyword of a slot, as returned by class-slots or by class-slot-definition.

(slot-definition-name '(x #:init-form 0  #:accessor x))       => x

(slot-definition-accessor '(x #:init-form 0  #:accessor x))   => x

(slot-definition-allocation '(x #:init-form 0  #:accessor x)) => instance

(slot-definition-options '(x #:init-form 0 #:accessor x))

 => (#:init-form 0 #:accessor x)

STklos procedure

(generic-function-name gf) 

(generic-function-methods gf) 

(generic-function-documentation gf) 



Given a generic function object, these procedures return the name, the list of methods and the

documentation of the generic function.

For example,

(define-generic compute :documentation "This function does computations")

(define-method compute ( (a <real>) (b <real>) )

  (* a b))

(define-method compute ( (a <real>) (b <complex>) )

  (* a (imag-part b)))

(generic-function-name compute)          => compute

(generic-function-methods compute)       => (#[<method> 7f9901743db0]

                                             #[<method> 7f990155af60])

(generic-function-documentation compute) => "This function does computations"

It is not necessary that the generic function be explicitly defined. If it is not explicitly created,

however, the documentation will be set to #f.

  //  SPDX-License-Identifier: GFDL-1.3-or-later

//

//  Copyright © 2000-2023 Erick Gallesio <eg@stklos.net>

//

//           Author: Erick Gallesio [eg@unice.fr]

//    Creation date: 26-Nov-2000 18:19 (eg)

[1] This section is an adaptation of Jeff Dalton’s (J.Dalton@ed.ac.uk) "Brief introduction to CLOS" which can be found at

http://www.aiai.ed.ac.uk/~jeff/clos-guide.html
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Chapter 9. Threads, Mutexes and Condition

Variables

The thread system provides the following data types:

• Thread (a virtual processor which shares object space with all other threads)

• Mutex (a mutual exclusion device, also known as a lock and binary semaphore)

• Condition variable (a set of blocked threads)

The STklos thread system is conform to SRFI-18 (Multithreading support), and implement all the

SRFI mechanisms. See this SRFI documentation for a more complete description

9.1. Threads

STklos procedure

(make-thread thunk) 

(make-thread thunk name) 

(make-thread thunk name stack-size) 

Returns a new thread. This thread is not automatically made runnable (the procedure thread-

start! must be used for this). A thread has the following fields: name, specific, end-result, end-

exception, and a list of locked/owned mutexes it owns. The thread’s execution consists of a call to

thunk with the "initial continuation". This continuation causes the (then) current thread to store the

result in its end-result field, abandon all mutexes it owns, and finally terminate. The dynamic-wind

stack of the initial continuation is empty. The optional name is an arbitrary Scheme object which

identifies the thread (useful for debugging); it defaults to an unspecified value. The specific field is

set to an unspecified value. The thread inherits the dynamic environment from the current thread.

Moreover, in this dynamic environment the exception handler is bound to the "initial exception

handler" which is a unary procedure which causes the (then) current thread to store in its end-

exception field an "uncaught exception" object whose "reason" is the argument of the handler,

abandon all mutexes it owns, and finally terminate.


The optional parameter stack-size permits to specify the size (in words) reserved

for the thread. This option does not exist in SRFI-18.

STklos procedure

(current-thread) 

Returns the current thread.

http://srfi.schemers.org/srfi-18/srfi-18.html
http://srfi.schemers.org/srfi-18/srfi-18.html


(eq? (current-thread) (current-thread))  =>  #t

STklos procedure

(thread-start! thread) 

Makes thread runnable. The thread must be a new thread. Thread-start! returns the thread.

(let ((t (thread-start! (make-thread

                           (lambda () (write 'a))))))

   (write 'b)

   (thread-join! t))       =>  unspecified

                               after writing ab or ba

STklos procedure

(thread-yield!) 

The current thread exits the running state as if its quantum had expired. Thread-yield! returns an

unspecified value.

STklos procedure

(thread-terminate! thread) 

Causes an abnormal termination of the thread. If the thread is not already terminated, all mutexes

owned by the thread become unlocked/abandoned and a "terminated thread exception" object is

stored in the thread’s end-exception field. If thread is the current thread, thread-terminate! does not

return. Otherwise, thread-terminate! returns an unspecified value; the termination of the thread

will occur before thread-terminate! returns.



• This operation must be used carefully because it terminates a thread abruptly

and it is impossible for that thread to perform any kind of cleanup. This may be

a problem if the thread is in the middle of a critical section where some

structure has been put in an inconsistent state. However, another thread

attempting to enter this critical section will raise an "abandoned mutex

exception" because the mutex is unlocked/abandoned.

• On Android, thread-terminate! can be used only to terminate the current



thread. Trying to kill another thread produces an error.

STklos procedure

(thread-sleep! timeout) 

The current thread waits until the timeout is reached. This blocks the thread only if timeout

represents a point in the future. It is an error for timeout to be #f. Thread-sleep! returns an

unspecified value.

STklos procedure

(thread-join! thread) 

(thread-join! thread timeout) 

(thread-join! thread timeout timeout-val) 

The current thread waits until the thread terminates (normally or not) or until the timeout is

reached if timeout is supplied. If the timeout is reached, thread-join! returns timeout-val if it is

supplied, otherwise a "join timeout exception" is raised. If the thread terminated normally, the

content of the end-result field is returned, otherwise the content of the end-exception field is raised.

(let ((t (thread-start! (make-thread (lambda ()

                                       (expt 2 100))))))

  (thread-sleep! 1)

  (thread-join! t)) => 1267650600228229401496703205376

STklos procedure

(thread? obj) 

Returns #t if obj is a thread, otherwise returns #f.

(thread? (current-thread))  => #t

(thread? 'foo)              => #f

STklos procedure



(thread-name thread) 

Returns the name of the thread.

(thread-name (make-thread (lambda () #f) 'foo))  =>  foo

STklos procedure

(thread-stack-size thread) 

Returns the allocated stack size for thread.

(thread-stack-size (make-thread (lambda () #f) 'foo 2000)) => 2000

Note that this procedure is not present in SRFI-18.

STklos procedure

(thread-specific thread) 

Returns the content of the `thread’s specific field.

STklos procedure

(thread-specific-set! thread) 

Stores obj into the thread’s specific field. `Thread-specific-set! returns an unspecified value.

(thread-specific-set! (current-thread) "hello")

           =>  unspecified

(thread-specific (current-thread))

           =>  "hello"

9.2. Mutexes

http://srfi.schemers.org/srfi-18/srfi-18.html


STklos procedure

(make-mutex) 

(make-mutex name) 

Returns a new mutex in the unlocked/not-abandoned state. The optional name is an arbitrary

Scheme object which identifies the mutex (useful for debugging); it defaults to an unspecified value.

The mutex’s specific field is set to an unspecified value.

STklos procedure

(mutex? obj) 

Returns #t if obj is a mutex, otherwise returns #f.

STklos procedure

(mutex-name mutex) 

Returns the name of the mutex.

(mutex-name (make-mutex 'foo))  =>  foo

STklos procedure

(mutex-specific mutex) 

Returns the content of the `mutex’s specific field.

STklos procedure

(mutex-specific! mutex obj) 

Stores obj into the `mutex’s specific field and eturns an unspecified value.

(define m (make-mutex))

(mutex-specific-set! m "hello")  =>  unspecified



(mutex-specific m)               =>  "hello"

(define (mutex-lock-recursively! mutex)

  (if (eq? (mutex-state mutex) (current-thread))

      (let ((n (mutex-specific mutex)))

        (mutex-specific-set! mutex (+ n 1)))

      (begin

        (mutex-lock! mutex)

        (mutex-specific-set! mutex 0))))

(define (mutex-unlock-recursively! mutex)

  (let ((n (mutex-specific mutex)))

    (if (= n 0)

        (mutex-unlock! mutex)

        (mutex-specific-set! mutex (- n 1)))))

STklos procedure

(mutex-state mutex) 

Returns information about the state of the mutex. The possible results are:

• a thread T: the mutex is in the locked/owned state and thread T is the owner of the mutex

• the symbol not-owned: the mutex is in the locked/not-owned state

• the symbol abandoned: the mutex is in the unlocked/abandoned state

• the symbol not-abandoned: the mutex is in the unlocked/not-abandoned state

(mutex-state (make-mutex))  =>  not-abandoned

(define (thread-alive? thread)

  (let ((mutex (make-mutex)))

    (mutex-lock! mutex #f thread)

    (let ((state (mutex-state mutex)))

      (mutex-unlock! mutex) ; avoid space leak

      (eq? state thread))))

STklos procedure

(mutex-lock! mutex) 

(mutex-lock! mutex timeout) 

(mutex-lock! mutex timeout thread) 



If the mutex is currently locked, the current thread waits until the mutex is unlocked, or until the

timeout is reached if timeout is supplied. If the timeout is reached, mutex-lock! returns #f.

Otherwise, the state of the mutex is changed as follows:

• if thread is #f the mutex becomes locked/not-owned,

• otherwise, let T be thread (or the current thread if thread is not supplied),

◦ if T is terminated the mutex becomes unlocked/abandoned,

◦ otherwise mutex becomes locked/owned with T as the owner.

After changing the state of the mutex, an "abandoned mutex exception" is raised if the mutex was

unlocked/abandoned before the state change, otherwise mutex-lock! returns #t.

(define (sleep! timeout)

  ;; an alternate implementation of thread-sleep!

  (let ((m (make-mutex)))

  (mutex-lock! m #f #f)

  (mutex-lock! m timeout #f)))

STklos procedure

(mutex-unlock! mutex) 

(mutex-unlock! mutex condition-variable) 

(mutex-unlock! mutex condition-variable timeout) 

Unlocks the mutex by making it unlocked/not-abandoned. It is not an error to unlock an unlocked

mutex and a mutex that is owned by any thread. If condition-variable is supplied, the current

thread is blocked and added to the condition-variable before unlocking mutex; the thread can

unblock at any time but no later than when an appropriate call to condition-variable-signal! or

condition-variable-broadcast! is performed (see below), and no later than the timeout (if timeout is

supplied). If there are threads waiting to lock this mutex, the scheduler selects a thread, the mutex

becomes locked/owned or locked/not-owned, and the thread is unblocked. mutex-unlock! returns #f

when the timeout is reached, otherwise it returns #t.

STklos procedure

(with-mutex mtx <thunk>) 

Executes thunk, protected by mutex mtx. The mutex will be locked before and released after

execution of body, and also on entrance or departure of its dynamic context (lock and unlock are

used within dynamic-wind).



9.3. Condition Variables

STklos procedure

(make-conditon-variable) 

(make-conditon-variable name) 

Returns a new empty condition variable. The optional name is an arbitrary Scheme object which

identifies the condition variable (useful for debugging); it defaults to an unspecified value. The

condition variable’s specific field is set to an unspecified value.

STklos procedure

(conditon-variable? obj) 

Returns #t if obj is a condition variable, otherwise returns #f.

STklos procedure

(conditon-variable-name conditon-variable) 

Returns the name of the condition-variable.

STklos procedure

(conditon-variable-specific conditon-variable) 

Returns the content of the `condition-variable’s specific field.

STklos procedure

(conditon-variable-specific-set! conditon-variable obj) 

Stores obj into the `condition-variable’s specific field.



STklos procedure

(condition-variable-signal! condition-variable) 

If there are threads blocked on the condition-variable, the scheduler selects a thread and unblocks

it. Condition-variable-signal! returns an unspecified value.

STklos procedure

(condition-variable-broadcast! condition-variable) 

Unblocks all the threads blocked on the condition-variable. Condition-variable-broadcast! returns

an unspecified value.

9.4. Conditions

STklos procedure

(join-timeout-exception? obj) 

Returns #t if obj is a join timeout exception object, otherwise returns #f.

A join timeout exception is raised when thread-join! is called, the timeout is reached and no timeout-

val is supplied.

STklos procedure

(abandoned-mutex-exception? obj) 

Returns #t if obj is an abandoned mutex exception object, otherwise returns #f.

An abandoned mutex exception is raised when the current thread locks a mutex that was owned by

a thread which terminated ,(see mutex-lock!).

STklos procedure

(terminated-thread-exception? obj) 



Returns #t if obj is a terminated thread exception object, otherwise returns #f.

A terminated thread exception is raised when thread-join! is called and the target thread has

terminated as a result of a call to thread-terminate!.

STklos procedure

(uncaught-exception? obj) 

Returns #t if obj is an uncaught exception object, otherwise returns #f.

An uncaught exception is raised when thread-join! is called and the target thread has terminated

because it raised an exception that called the initial exception handler of that thread.

STklos procedure

(uncaught-exception-reason exc) 

Returns the object which was passed to the initial exception handler of that thread (exc must be an

uncaught exception object).



Chapter 10. STklos Customization

10.1. Parameter Objects

STklos environement can be customized using Parameter Objects. These parameters are listed

below.

STklos procedure

(real-precision) 

(real-precision value) 

This parameter object allows changing the default precision used to print real numbers.

By precision when printing a number we mean the number of significant digits — that is, excluding

the leading and trailing zeros in decimal representation. (This is exactly the same as the number for

the g specifier for printf in the C language).

(real-precision)         => 15

(define f 0.123456789)

(display f)              => 0.123456789

(real-precision 3)

(display f)              => 0.123

(display   1.123456789)  => 1.12

(display  12.123456789)  => 12.1

(display 123.123456789)  => 123.0

In the last example, only three significant digits were printed (123), and the zero only marks this

number as inexact.

If the number won’t fit using the usual decimal format, it will be printed in scientific notation, but

still using the specified number of significant digits:

(display     1234.123456789) => 1.23e+03

(display    12345.123456789) => 1.23e+04

(display 12345678.123456789) => 1.23e+07

Repeating the three examples above with precision equal to one results in the following.

(real-precision 1)

(display     1234.123456789) => 1e+03

(display    12345.123456789) => 1e+04

(display 12345678.123456789) => 1e+07



If the number is only printed up to its n-th digit, then the printed nth digit will be n rounded up or

down, according to the digit that comes after it.

(real-precision 4)

(display 12.123456789) => 12.12  ;; "123..." rounded to "12"

(display 12.987654321) => 12.99  ;; "987..." rounded to "99"

STklos procedure

(accept-srfi-169-numbers) 

(accept-srfi-169-numbers value) 

This parameter object permits to change the behavior of the reader with underscores in numbers.

Numbers with underscores are defined in ,(link-srfi 169). By default, this variable is true, meaning

that underscores are accepted in numbers.

(accept-srfi-169-numbers)        => #t

(symbol? '1_000_000)             => #f

(number? '1_000_000)             => #t

(accept-srfi-169-numbers #f)

(symbol? '1_000_000)             => #t

(number? '1_000_000)             => #f

STklos procedure

(read-case-sensitive) 

(read-case-sensitive value) 

This parameter object permits to change the default behaviour of the read primitive used on the

current input port , when reading a symbol. If this parameter has a true value a symbol is not

converted to a default case when interned. Since R
7
RS requires that symbol are case insignificant,

the default value of this parameter is #t.


• This parameter works on the current input port only and cannot change read

beahviour’s globally.

• See also syntax for special characters in symbols.

STklos procedure

(write-pretty-quotes) 



(write-pretty-quotes value) 

This parameter object permits to change the default behaviour of the display or write primitives

when they write a list which starts with the symbol quote, quasiquote, unquote or unquote-splicing.

If this parameter has a false value, the writer uses the list notation instead of a more human-

readable value. By default, this parameter value is set to #t.

(let ((x ''a))

  (display x)

  (display " ")

  (write-pretty-quotes #f)

  (display x))               |- 'a (quote a)

STklos procedure

(load-path) 

(load-path value) 

load-path is a parameter object. It returns the current load path. The load path is a list of strings

which correspond to the directories in which a file must be searched for loading. Directories of the

load path are ,(emph "prepended") (in their apparition order) to the file name given to load or try-

load until the file can be loaded.

The initial value of the current load path can be set from the shell, by setting the STKLOS_LOAD_PATH

shell variable.

Giving a value to the parameter load-path permits to change the current list of paths.

STklos procedure

(load-suffixes) 

(load-suffixes value) 

load-suffixes is a parameter object. It returns the list of possible suffixes for a Scheme file. Each

suffix, must be a string. Suffixes are appended (in their apparition order) to a file name is appended

to a file name given to load or try-load until the file can be loaded.

STklos procedure



(load-verbose) 

(load-verbose value) 

load-verbose is a parameter object. It permits to display the path name of the files which are loaded

by load or try-load on the current error port, when set to a true value. If load-verbose is set to #f, no

message is printed.

STklos procedure

(thread-handler-error-show) 

(thread-handler-error-show value) 

When an untrapped error occurs in a thread, it produces an uncaught exception which can finally

be trapped when the thread is joined. Setting the thread-handler-error-show parameter permits to

see error message as soon as possible, even without joining the thread. This makes debugging

easier. By default, this parameter is set to #t.

STklos procedure

(stklos-debug-level) 

stklos-debug-level is a parameter objet. It permits to know the current debugging level. The default

value of this parameter is 0 (meaning "no debug"). Note that the debugging level can also be set by

the --debug option of the stklos(1) command.

10.2. Environment variables

The following variables can be used to customize STklos:

• STKLOS_LOAD_PATH: This is a colon-separated list of directories in which stklos looks for

loading files. It is used by primitives such as load or try-load. See also the load-path parameter.

• STKLOS-FRAME: This variable must contains an integer which indicates the number of frames

printed on an error. Use the value 0 for an unlimited backtrace.

• STKLOS-CONFDIR: This variable can be used to designate the directory used by STklos to store

its configuration or packages files. If not set, the default STklos configuration directory is by

default ${XDG_CONFIG_HOME}/stklos (or ~/.config/stklos if the shell variable XDG_CONFIG_HOME is

unset).

10.3. REPL

By default, theSTklos REPL try to find an installed editing line library to read input expressions. It



tries to link with GNU readline [Readline] or BSD libedit [Libedit] libraries. Line editing offers

editing capabilities while the user is entering the line (navigation in the line, in the history and

function or file completion).

STklos procedure

(repl) 

(repl :in inport :out outport :err errport) 

This procedure launches a new Read-Eval-Print-Loop. Calls to repl can be embedded. The ports

used for input/output as well as the error port can be passed when repl is called. If not passed, they

default to current-input-port, current-output-port and current-error-port.

10.3.1. REPL commands

By default, STklos accepts some special commands. A command starts with a comma character,

followed by the name of the command. The list of available commands is given below.

• ,backtrace (or ,bt): Show the stack when last error occurred

• ,cd: Change current directory

• ,quit (or ,q): Exit STklos

• ,time (or ,t ): Print the time used to run the next expression

• ,describe (or ,d): Describe an object

• ,expand (or ,e): Pretty print the macro expansion of a form

• ,import (or ,i): Import a library

• ,require-feature (or ,r): Require a feature

• ,open (or ,o): Open file or URL

• ,browse (or ,b): Browse file or URL with the default browser

• ,manual (or ,m): Search reference manual

• ,apropos (or ,a): Search symbols containing a given string

• ,version (or ,v): Show version

• ,help (or ,? or *,h): Show help on REPL command with parameter. With a parameter, display the

help of this parameter

Furthermore, the '!' character can also be used to execute an external command using sh(1). For

instance,

stklos> !pwd

/tmp/test

stklos> !emacs foo.stk &   ;; to launch emacs on file foo.stk

stklos> (define !pwd 100)



;; !pwd

stklos> !pwd               ;; now !pwd overrides pwd(1)

100

stklos>

STklos procedure

(repl-add-command names doc func) 

Add a new command to the REPL. The names of the command are given in the first parameter as a

list (or a symbol if there is only one name). The documentation of the command is given as a string

as the second parameter. Finally, the function given as the third parameter is called when the new

command is executed by the user. The code hereafter, permits to add a command to call an editor,

with the commands ,editor or ,ed followed (eventually) by a file name.

(repl-add-command '(editor ed)

                 "Edit a file with $EDITOR (or emacs if unset)"

                 (lambda ()

                   (let ((cmd (or (getenv "EDITOR") "emacs")))

                     (system (string-append cmd " " (read-line) " 2>/dev/null")))))


STklos has already a number of commands defined, but repl-add-command can be

useful to define your own commrand. A good place to add such a definition is in

the stklosrc file.

10.3.2. REPL variables

By default, STklos defines the following variables:

• @1, @2, @3, @4 and @5 contains five the last REPL’s computed values

• @ is an alias on @1 (the last value computed by the REPL)

• @* contains a list of @1, @2, @3, @4 and @5 values

stklos> (values 'a 'b 'c 'd 'e)

a

b

c

d

e

stklos> @*

(a b c d e)

stklos> (+ 2 3)

5

stklos> @*



(5 (a b c d e) a b c)

10.3.3. REPL parameters

The following parameter objects can be used to customize the REPL:

STklos procedure

(repl-theme) 

(repl-theme plist) 

(repl-theme name) 

The STklos REPL colors can be customized using a property list (or a theme name) using the repl-

theme parameter. The properties that can be used in this property list are:

• #:error for the color of error messages

• #:prompt for the color of the prompt

• #:help-prompt for the color of the help prompt

• #:help for the color of the help messages

• #:repl-depth for the color of the depth indicator for recursive REPLs

• #:info for the color of information messages.

There are three default themes:

• classic which is the (colorful) default theme.

• monochrome which doesn’t use colors

• minimal where only the prompt and errors are colored.

Colors are expressed using the conventions of the ansi-color primitive. For instance:

(key-set! (repl-theme) :prompt '(bold green)) ;; set the prompt to bold green

(repl-theme 'minimal)                         ;; to use a sober prompt

(repl-theme '(#:error (bold red)              ;; explicitly defined theme

              #:prompt (bold bg-red white)))

 A good place to change your theme is the stklosrc file.

STklos procedure



(repl-show-startup-message) 

(repl-show-startup-message val) 

If this parameter is a true value, a banner is printed when STklos starts in interactive mode.

Otherwise, no banner is printed. By default, this parameter is set to #t.


This parameter can be set to #f with the --no-startup-message option of the STklos

command. Otherwise, a good place to set this parameter is in the stklosrc file.



Chapter 11. Foreign Function Interface

The STklos Foreign Function Interface (FFI for short) has been defined to allow an easy access to

functions written in C without needing to build C-wrappers and, consequently, without any need to

write C code. FFI is very machine dependent and STklos uses the libffi library, a portable Foreign

Function Interface library, to give access to C written code. This library supports a large set of

architectures/OS that are described on its Home Page.

Moreover, since FFI allows very low level access, it is easy to crash the STklos VM when using an

external C function.

Note that the support for FFI is still minimal and that it will evolve in future versions.

11.1. External functions

The definition of an external function is done with the define-external special form. This form

takes as arguments a typed list of parameters and accepts several options to define the name of the

function in the C world, the library which defines this function, … The type of the function result

and the type of its arguments are defined in Table 1. This table lists the various keywords reserved

for denoting types and their equivalence between the C and the Scheme worlds.

Table 1. FFI types

Name Corresponding C type Corresponding Scheme type

:void void none

:char char Scheme character

:short short Scheme integer

:ushort unsigned short Scheme integer

:int int Scheme integer

:uint unsigned int Scheme integer

:long long int Scheme integer

:ulong unsigned long int Scheme integer

:float float Scheme real number

:double double Scheme real number

:boolean int boolean

:pointer void * Scheme pointer object or

Scheme string

:string char * Scheme string

:obj void * Any Scheme object passed as is

https://sourceware.org/libffi/


STklos syntax

(define-external name parameters option) 

The form define-external binds a new procedure to name. The arity of this new procedure is defined

by the typed list of parameters given by parameters. This parameters list is a list of keywords (as

defined in the previous table) or couples whose first element is the name of the parameter, and the

second one is a type keyword. All the types defined in the above table, except :void, are allowed for

the parameters of a foreign function.

Define-external accepts several options:

• :return-type is used to define the type of the value returned by the foreign function. The type

returned must be chosen in the types specified in the table. For instance:

(define-external maximum(:int :int)

   :return-type :int)

defines the foreign function maximum which takes two C integers and returns an integer result.

Omitting this option default to a result type equal to :void (i.e. the returned value is undefined).

• :entry-name is used to specify the name of the foreign function in the C world. If this option is

omitted, the entry-name is supposed to be name. For instance:

(define-external minimum((a :int) (b :int))

   :return-type :int

   :entry-name  "min")

defines the Scheme function minimum whose application executes the C function called min.

• :library-name is used to specify the library which contains the foreign-function. If necessary, the

library is loaded before calling the C function. So,

(define-external minimum((a :int) (b :int))

   :return-type  :int

   :entry-name   "min"

   :library-name "libminmax")

defines a function which will execute the function min located in the library libminmax.xx (where

xx is the suffix used for shared libraries on the running system (generally so)).

Hereafter, are some commented definitions of external functions:

 (define-external isatty ((fd :int))

     :return-type :boolean)



  (define-external system ((cmd :string))

    :return-type :int)

  (define-external ttyname (:int)

    :return-type :string)

All these functions are defined in the C standard library, hence it is not necessary to specify the

:library-name option.

• istty is declared here as a function which takes an integer and returns a boolean (in fact, the

value returned by the C function isatty is an int, but we ask here to the FFI system to translate

this result as a boolean value in the Scheme world).

• system is a function which takes a string as parameter and returns an int.

• ttyname is a function whih takes an int and returns a string. Note that in this function the name

of the parameter has been omitted as within C prototypes.

If an external function receives an :int argument and is passed a Scheme bignum, which then

doesn’t fit a long int in C, the external function will signal an error. When a :float or :double

argument is declared and is passed a Scheme real that requires so many bits so as to not be

representable in that type, that argument will be silently taken as infinity.

 (define-external c-abs ((fd :int))

     :entry-name "abs"

     :return-type :int)

 (define-external c-fabs ((fd :double))

     :entry-name "fabs"

     :return-type :double)

 (define-external c-fabsf ((fd :float))

     :entry-name "fabsf"

     :return-type :float)

We can now use the function we have just defined:

(c-abs (- (expt 2 70)))    => Error

(c-fabs -1.0e+250)         => 1e+250

(c-fabsf -1.0e+250)        => +inf.0

(c-fabs (- (expt 10 300))) => 1e+300

(c-fabs (- (expt 10 600))) => +inf.0

In the following example we use the :string type. C functions accepting pointers to null-terminated

strings are directly translated to this type.

The POSIX function strpbrk accepts two string arguments (in C, two pointers to char). The C call

strpbrk(str1, str2) returns a pointer to the first occurrence in the string str1 of one of the bytes in

the string str2.



(define-external c-strpbrk ((str :string) (accept :string))

    :entry-name "strpbrk"

    :return-type :string)

(c-strpbrk "a string" "rz") => "ring"

Note that it would be possible to use a :pointer type instead for the return value, although in this

case it would be more cumbersome (but does help understand the FFI better!):

(define-external c-strpbrk ((str :string) (accept :string))

    :entry-name "strpbrk"

    :return-type :pointer)

(c-strpbrk "a string" "rz")

                            => #[C-pointer 7f17baf94d06 @ 7f17bafb4360]

(cpointer->string (c-strpbrk "a string" "rz"))

                            => "ring"

In order to pass a NULL pointer to an external C function, the #void Scheme value can be used.

As an example, the second argument to the strtol function can be NULL:

(define-external strtol(:string :pointer :int)

  :return-type :long)

(strtol "1001" #void 10) => 1001

(strtol "1001" #void 2)  => 9

Functions on C pointers are described in the next section.

11.2. C pointers

It is very common that external functions return pointers, serving as handles on internal

structures. This pointers, called hereafter cpointers, are then boxed in a Scheme objects. This

section presents the functions that can be used to deal with C pointers.


Note that by using cpointers objects, one gives up the safety of the Scheme

environment, and care must be taken to avoid memory corruptions, errors,

crashes…



STklos procedure

(cpointer? obj) 

Returns #t is obj is a cpointer (a Scheme object which encapsulate a pointer to a C object), and #f

otherwise.

STklos procedure

(cpointer-null? obj) 

Returns #t is obj is a cpointer and its value is the C NULL value. Returnd #f otherwise.

STklos procedure

(cpointer-data obj) 

(cpointer-data-set! obj adr) 

cpointer-data returns the value associated to cpointer obj (that is the value of the pointer itself: an

address).

cpointer-data-set! permits to change the pointer stored in the obj cpointer to adr. This is of course

very dangerous and could lead to fatal errors.

STklos procedure

(cpointer-type obj) 

(cpointer-type-set! obj tag) 

cpointer-type returns the tag type associated to a cpointer. The C runtime or an extension can

associate * a tag to a cpointer to make some controls (for instance, verify that obj is a cpointer on a

widget structure). This function returns void if a type has not been set before. The semantic

associated to this tag is completely left to the extension writer.

cpointer-type-set! permits to set the tag of the obj cpointer to tag (which can be of any type).

STklos procedure

(cpointer→string str) 



Returns the C (null terminated) string str as a Scheme string. If str doesn’t contain a C string, the

result will probably result in a fatal error.

(define-external c-ghn ((s :pointer) (size :int))

                 :entry-name "gethostname"

                 :return-type :int)

(define name (allocate-bytes 10))

name                    => #[C-pointer 7fd830820f80 @ 7fd8305bee40]

(c-ghn name 9)          => 0

(cpointer->string name) => "socrates"

STklos procedure

(allocate-bytes n) 

Allocate-bytes will allocate n consecutive bytes using the standard STklos allocation function

(which uses the Boehm–Demers–Weiser garbage collector [BoehmGC]). It returns a cpointer Scheme

object that points to the first byte allocated. This pointer is managed by the standard GC and doesn’t

need to be freed.

STklos procedure

(free-bytes obj) 

Obj must be a cpointer to allocated data. When Free-bytes is called on obj, it will deallocate its data

calling - the C function free (if it was allocated by the standard C malloc function), or - the Boehm GC

free function (if the pointer was allocated using allocate-bytes primitive).

(define a (allocate-bytes 10))

a   => #[C-pointer 7fd91e8e0f80 @ 7fd91e897b70]

(cpointer-type-set! a 'myadress)

a   => #[myadress-pointer 7fd91e8e0f80 @ 7fd91e897b70]

(free-bytes a)

a   => #[myadress-pointer 0 @ 7fd91e897b70]

After the call to free-bytes, when a is printed, the first number shown is zero, indicating that its

data pointer does not point to allocated memory (a NULL value for C).



Chapter 12. Using the SLIB package

SLIB is a library for the programming language Scheme, written by Aubrey Jaffer [SLIB]. It provides

a platform independent framework for using packages of Scheme procedures and syntax. It uses

only standard Scheme syntax and thus works on many different Scheme implementations.

To use this package, you have just to type

(require "slib")

or use the SRFI-96 (SLIB Prerequisites) with

(import (srfi 96))

and follow the instructions given in the SLIB library manual to use a particular package.



SLIB uses also the require and provide mechanism to load components of the

library. Once SLIB has been loaded, the standard STklos require and provide are

overloaded such as if their parameter is a string this is the old STklos procedure

which is called, and if their parameter is a symbol, this is the SLIB one which is

called.

SLIB needs to create a catalog of the file that must be loaded to implement a given

feature. This catalog is stored in a file named slibcat This file is, by default located

in the slib directory into the STklos configuration directory (generally

~/.config/stklos). It is possible to change this directory with the

STKLOS_IMPLEMENTATION_PATH shell variable.

STklos searches the SLIB implementation directory in some standard places. If not

found, you can fix it with the SCHEME_LIBRARY_PATH shell variable.

http://srfi.schemers.org/srfi-96/srfi-96.html


Chapter 13. SRFIs

Scheme Request For Implementation (SRFI) process grew out of the Scheme Workshop held in

Baltimore, MD, on September 26, 1998, where the attendees considered a number of proposals for

standardized feature sets for inclusion in Scheme implementations. Many of the proposals received

overwhelming support in a series of straw votes. Along with this there was concern that the next

Revised Report would not be produced for several years and this would prevent the timely

implementation of standardized approaches to several important problems and needs in the

Scheme community.

Only the implemented SRFIs are (briefly) presented here. For further information on each SRFI,

please look at the official SRFI site.

13.1. Supported SRFIs

STklos supports 126 finalized SRFIS. Some of these SRFIS are embedded and some are external.

An embedded SRFI can be directly used without any particular action, whereas an external needs to

be loaded before use.

The following SRFIS are implemented:

- SRFI-0 — Feature-based conditional expansion construct

- SRFI-1 — List Library

- SRFI-2 — AND-LET*: an AND with local bindings, a guarded LET* special form

- SRFI-4 — Homogeneous numeric vector datatypes

- SRFI-5 — A compatible let form with signatures and rest arguments

- SRFI-6 — Basic String Ports

- SRFI-7 — Feature-based program configuration language

- SRFI-8 — Receive: Binding to multiple values

- SRFI-9 — Defining Record Types

- SRFI-10 — Sharp Comma External Form

- SRFI-11 — Syntax for receiving multiple values

- SRFI-13 — String Library

- SRFI-14 — Character-Set Library

- SRFI-15 — Syntax for dynamic scoping (withdrawn)

- SRFI-16 — Syntax for procedures of variable arity

- SRFI-17 — Generalized set!

- SRFI-18 — Multithreading support

- SRFI-19 — Time Data Types and Procedures

- SRFI-22 — Running Scheme Scripts on Unix

- SRFI-23 — Error reporting mechanism

- SRFI-25 — Multi-dimensional Arrays

- SRFI-26 — Notation for Specializing Parameters without Currying

- SRFI-27 — Source of random bits

- SRFI-28 — Basic Format Strings

- SRFI-29 — Localization

- SRFI-30 — Nested Multi-line Comments

- SRFI-31 — A special form for recursive evaluation

- SRFI-34 — Exception Handling for Programs

- SRFI-35 — Conditions

- SRFI-36 — I/O Conditions

- SRFI-37 — args-fold: a program argument processor

- SRFI-38 — External representation of shared structures
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- SRFI-39 — Parameters objects

- SRFI-41 — Streams

- SRFI-43 — Vector library

- SRFI-45 — Primitives for Expressing Iterative Lazy Algorithms

- SRFI-46 — Basic Syntax-rules Extensions

- SRFI-48 — Intermediate Format Strings

- SRFI-51 — Handling rest list

- SRFI-54 — Formatting

- SRFI-55 — Require-extension

- SRFI-59 — Vicinity

- SRFI-60 — Integers as bits

- SRFI-61 — A more general COND clause

- SRFI-62 — S-expression comments

- SRFI-64 — A Scheme API for test suites

- SRFI-66 — Octet Vectors

- SRFI-69 — Basic Hash Tables

- SRFI-70 — Numbers

- SRFI-74 — Octet-Addressed Binary Blocks

- SRFI-87 — ⇒ in case clauses

- SRFI-88 — Keyword Objects

- SRFI-89 — Optional Positional and Named Parameters

- SRFI-94 — Type-Restricted Numerical Functions

- SRFI-95 — Sorting and Merging

- SRFI-96 — SLIB Prerequisites

- SRFI-98 — Interface to access environment variables

- SRFI-100 — define-lambda-object

- SRFI-111 — Boxes

- SRFI-112 — Environment Inquiry

- SRFI-113 — Sets and Bags

- SRFI-115 — Scheme Regular Expressions

- SRFI-116 — Immutable List Library

- SRFI-117 — Queues based on lists

- SRFI-118 — Simple adjustable-size strings

- SRFI-125 — Intermediate hash tables

- SRFI-127 — Lazy Sequences

- SRFI-128 — Comparators (reduced)

- SRFI-129 — Titlecase procedures

- SRFI-130 — Cursor-based string library

- SRFI-132 — Sort Libraries

- SRFI-133 — Vector Library (R7RS-compatible)

- SRFI-134 — Immutable Deques

- SRFI-135 — Immutable Texts

- SRFI-137 — Minimal Unique Types

- SRFI-138 — Compiling Scheme programs to executables

- SRFI-141 — Integer Division

- SRFI-143 — Fixnums

- SRFI-144 — Flonums

- SRFI-145 — Assumptions

- SRFI-151 — Bitwise Operations

- SRFI-152 — String Library (reduced)

- SRFI-154 — First-class dynamic extents

- SRFI-156 — Syntactic combiners for binary predicates

- SRFI-158 — Generators and Accumulators

- SRFI-160 — Homogeneous numeric vector libraries

- SRFI-161 — Unifiable Boxes

- SRFI-162 — Comparators sublibrary

- SRFI-169 — Underscores in numbers

- SRFI-170 — POSIX API

- SRFI-171 — Transducers

- SRFI-173 — Hooks
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- SRFI-174 — POSIX Timespecs

- SRFI-175 — ASCII character library

- SRFI-176 — Version flag

- SRFI-178 — Bitvector library

- SRFI-180 — JSON

- SRFI-185 — Linear adjustable-length strings

- SRFI-189 — Maybe and Either: optional container types

- SRFI-190 — Coroutines Generators

- SRFI-192 — Port Positioning

- SRFI-193 — Command line

- SRFI-195 — Multiple-value boxes

- SRFI-196 — Range Objects

- SRFI-207 — String-notated bytevectors

- SRFI-208 — NaN procedures

- SRFI-214 — Flexvectors

- SRFI-215 — Central Log Exchange

- SRFI-216 — SICP Prerequisites (Portable)

- SRFI-217 — Integer Sets

- SRFI-219 — Define higher-order lambda

- SRFI-221 — Generator/accumulator sub-library

- SRFI-222 — Compound objects

- SRFI-223 — Generalized binary search procedures

- SRFI-224 — Integer Mappings

- SRFI-227 — Optional Arguments

- SRFI-228 — A further comparator library

- SRFI-229 — Tagged Procedures

- SRFI-230 — Atomic Operations

- SRFI-232 — Flexible Curried Procedures

- SRFI-233 — INI files

- SRFI-234 — Topological sorting

- SRFI-235 — Combinators

- SRFI-236 — Evaluating expressions in an unspecified order

- SRFI-238 — Codesets

- SRFI-244 — Multiple-value definitions

13.2. Using a SRFI

Using a particular SRFI can be done with the special form cond-expand defined in SRFI-0 which is

fully supported by STklos. This form accepts features identifiers which are of the form srfi-n

where n represents the number of the SRFI supported by the implementation (for instance srfi-1 or

srfi-30).

For instance, to use srfi-n, you can use

(cond-expand

 (srfi-n))

This forms does nothing if srfi-n is an embedded SRFI and ensures that all the files needed by this

SRFI will be properly loaded if it is an external SRFI.

STklos also offers the primitive require-feature which ensures (eventually) the loading of files

needed to use a given SRFI. This primitive accepts several forms to ensure that the SRFI can be

used. For instance, to use SRFI-1 (List Library), the following forms are possible:
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(require-feature 'srfi-1)

(require-feature "srfi-1")

(require-feature 1)

(require-feature 'lists)   ;; Since this feature name is an alias for SRFI-1

The list of the aliases defined for the supported SRFIs is given in Table 2.

13.2.1. Embedded SRFIs

As said before, an embedded SRFI can be used directly without loading a support file. (Note that

using require-feature works too and permits to ignore if the SRFI is embedded).

List of embedded SRFIs: srfi-0 srfi-6 srfi-8 srfi-10 srfi-11 srfi-15 srfi-16 srfi-18 srfi-22 srfi-

23 srfi-28 srfi-30 srfi-31 srfi-34 srfi-38 srfi-39 srfi-45 srfi-46 srfi-55 srfi-62 srfi-70 srfi-87

srfi-88 srfi-98 srfi-111 srfi-112 srfi-118 srfi-138 srfi-143 srfi-145 srfi-169 srfi-176 srfi-192

srfi-193 srfi-195 srfi-208 srfi-219 srfi-244

13.2.2. External SRFIs

An external SRFI needs to load at least one external file. This can be done with require or require-

feature. As with embedded SRFIS, using require-feature permits to ignore if the SRFI is external.

List of external SRFIs: srfi-1 srfi-2 srfi-4 srfi-5 srfi-7 srfi-9 srfi-13 srfi-14 srfi-17 srfi-19

srfi-25 srfi-26 srfi-27 srfi-29 srfi-35 srfi-36 srfi-37 srfi-41 srfi-43 srfi-48 srfi-51 srfi-54

srfi-59 srfi-60 srfi-61 srfi-64 srfi-66 srfi-69 srfi-74 srfi-89 srfi-94 srfi-95 srfi-96 srfi-100

srfi-113 srfi-115 srfi-116 srfi-117 srfi-125 srfi-127 srfi-128 srfi-129 srfi-130 srfi-132 srfi-133

srfi-134 srfi-135 srfi-137 srfi-141 srfi-144 srfi-151 srfi-152 srfi-154 srfi-156 srfi-158 srfi-160

srfi-161 srfi-162 srfi-170 srfi-171 srfi-173 srfi-174 srfi-175 srfi-178 srfi-180 srfi-185 srfi-189

srfi-190 srfi-196 srfi-207 srfi-214 srfi-215 srfi-216 srfi-217 srfi-221 srfi-222 srfi-223 srfi-224

srfi-227 srfi-228 srfi-229 srfi-230 srfi-232 srfi-233 srfi-234 srfi-235 srfi-236 srfi-238

13.2.3. SRFI features

For some SRFIs, STklos accepts that uses them with a name. This names are given Table 2.

Table 2. Feature identifiers

symbol require SRFI(s)

lists srfi-1

and-let* srfi-2

hvectors srfi-4

program srfi-7

records srfi-9

case-lambda srfi-16

error srfi-23



symbol require SRFI(s)

random srfi-27

args-fold srfi-37

parameters srfi-39

streams srfi-41

rest-list srfi-51

formatting srfi-54

testing srfi-64

hash-tables srfi-69

boxes srfi-111

sets-bags srfi-113

immutable-lists srfi-116

queues-as-lists srfi-117

adjustable-strings srfi-118

hash-table srfi-125

lazy-sequences srfi-127

comparators-reduced srfi-128

titlecase srfi-129

sort srfi-132

vector srfi-133

immutable-deques srfi-134

immutable-texts srfi-135

integer-division srfi-141

bitwise-ops srfi-151

posix srfi-170

transducers srfi-171

hooks srfi-173

posix-timespecs srfi-174

ascii srfi-175

JSON srfi-180

maybe-either srfi-189

ini-files srfi-233

topological-sort srfi-234

combinators srfi-235



symbol require SRFI(s)

conditions srfi-35 srfi-36

generators srfi-158 srfi-190

13.3. Misc. Information

Previous section described the general way to use the SRFIS implemented in STklos. This section

concentrates on information not given above.

srfi-0 — Feature-based conditional expansion construct

SRFI-0 defines the cond-expand special form. It is fully supported by STklos. STklos defines several

features identifiers which are of the form srfi-n where n represents the number of the SRFI

supported by the implementation (for instance srfi-1 or srfi-30).

STklos cond-expand accepts also some feature identifiers which are the same that the ones defined

in Table 2, such as case_lambda or generators.

Furthermore, the feature identifier stklos and STklos are defined for applications which need to

know on which Scheme implementation they are running on.

srfi-4 — Homogeneous numeric vector datatypes

SRFI-4 is fully supported and is extended to provide the additional c64vector and c128vector types

of SRFI-160 (Homogeneous numeric vector libraries).

STklos procedure

(uvector? uv) 

(uvector-length uv) 

(uvector-ref uv k) 

(uvector-set! uv k val) 

(uvector→list uv) 

(uvector-tag uv) 

These primitives extend SRFI-4. They can be called with any type of uniform (homogeneous) vector.

The primitive uvector-tag returns the tag of the uniform vector, as a symbol

(uvector? #s16(-1 2 3))    => #t

(uvector-length #u32(1 2)) => 2

(uvector-length #s64(1 2)) => 2

(uvector-tag #u8(1 2 3))   => u8

(uvector-tag #c32())       => c32

srfi-10 — Sharp Comma External Form

SRFI-10 is fully supported. This SRFI extends the STklos reader with the #, notation which is fully
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described in this document (see primitive define-reader-ctor).

srfi-16 — Syntax for procedures of variable arity

SRFI-16 is fully supported. Note that case-lambda is now defined in R
7
RS.

srfi-17 — Generalized set!

SRFI-17 is fully supported. See the documentation of procedures set! and setter. However,

requiring explicitly srfi-17 permits to define the setters for the (numerous) cXXXXr list procedures.

srfi-19 — Time Data Types and Procedures

SRFI-19 is fully supported. STklos offers, as an extension, the procedures date=?, date<?, date>?,

date⇐? and date>=?. These will compare dates by first normalizing them to make the time zone

offset irrelevant, so "2000 Nov 12 03:30:10 GMT-2" will be taken as equal to "2000 Nov 12 02:30:10

GMT-1".

STklos procedure

(time-difference time1 time2) 

(time-difference! time1 time2) 

These SRFI-19 procedures return the time duration (as an object of type time-duration) between

time1 and time2. It is an error if time1 and time2 are of different time types.


time-difference creates a new time object, while time-difference! may use time1 to

create the resulting object.

R
5
RS procedure

(time⇐? time1 time2) 

(time<? time1 time2) 

(time=? time1 time2) 

(time>=? time1 time2) 

(time>? time1 time2) 

These are SRFI-19 predicates used to compare times. They return:

• time⇐? : #t if time1 is before or at (less than or equal to) time2, #f otherwise.

• time<? : #t if time1 is before (less than) time2, #f otherwise.

• time=? : #t if time1 at (equal) time2, #f otherwise.
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• time>=? : #t if time1 is at or after (greater than or equal to) time2, #f otherwise.

• time>? : #t if time1 is after (greater than) time2, #f otherwise.

An attempt to compare times of different type will raise an error.

STklos procedure

(time-resolution [time-type]) 

Clock resolution, in nanoseconds, of the system clock of type type time-type, which defaults to TIME-

UTC.

(time-resolution)              => 1000000

(time-resolution time-process) => 1000000

(time-resolution time-tai)     => 1000000

srfi-22 — Running Scheme Scripts on Unix

SRFI-22 describes basic prerequisites for running Scheme programs as Unix scripts in a uniform

way. Specifically, it describes:

• the syntax of Unix scripts written in Scheme,

• a uniform convention for calling the Scheme script interpreter, and

• a method for accessing the Unix command line arguments from within the Scheme script.

SRFI-22 (Running Scheme Scripts on Unix) recommends to invoke the Scheme script interpreter

from the script via a /usr/bin/env trampoline, like this:

#!/usr/bin/env stklos

Here is an example of the classical echo command (without option) in Scheme:

#!/usr/bin/env stklos

(define (main arguments)

  (for-each (lambda (x) (display x) (display #space))

            (cdr arguments))

  (newline)

  0)

srfi-23 — Error reporting mechanism

SRFI-23 is fully supported. Note that the STklos error is more general than the one defined in SRFI-

http://srfi.schemers.org/srfi-22/srfi-22.html
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23.

srfi-25 — Multi-dimensional Arrays

STklos implements the arrays of SRFI-25. All the forms defined in the SRFI are implemented in

STklos, but some other functions, not present in the SRFI, are documented here.

STklos procedure

(shape? obj) 

Checks if obj is an array shape. SRFI-25 dictates that a shape is an ordinary array, with rank two

and shape (0 r 0 2), where r is the rank of the array that the shape describes. So, any array of

shape (0 r 0 2 is a shape, for any non-negative integer r.

STklos procedure

(shared-array? array) 

Will return #t when the array has its data shared with other arrays, and #f otherwise.

STklos procedure

(shape-for-each shape proc [index-object]) 

This procedure will apply proc to all valid sequences of indices in shape, in row-major order.

If index-object is not provided, then proc must accept as many arguments as the number of

dimensions that the shape describes.

(shape-for-each (shape 1 3 10 12)

                (lambda (x y)

                  (format #t "[~a ~a]~%" x y)))

        |- [1 10]

           [1 11]

           [2 10]

           [2 11]

If index-object is provided, it is used as a place to store the indices, so proc must accept either a

vector or an array (this is to avoid pushing and popping too many values when calling proc). index-

object, when present, must be aither a vector or array.

http://srfi.schemers.org/srfi-25/srfi-25.html


(let ((vec (make-vector 2 #f)))

  (shape-for-each (shape 1 3 10 12)

                  (lambda (o)

                    (format #t "[~a ~a]~%"

                    (vector-ref o 0)

                    (vector-ref o 1)))

                  vec))

        |- [1 10]

           [1 11]

           [2 10]

           [2 11]

(let ((arr (make-array (shape 0 2))))

  (shape-for-each (shape 1 3 10 12)

                  (lambda (o)

                    (format #t "[~a ~a]~%"

                    (array-ref o 0)

                    (array-ref o 1)))

                  arr))

         |- [1 10]

            [1 11]

            [2 10]

            [2 11]

STklos procedure

(share-nths a d n) 

Share-nths takes every n`th slice along dimension `d into a shared array. This preserves the origin.

(define a (array (shape 0 4 0 4)

                 -1 -2 -3 -4

                 -5 -6 -7 -8

                 -9 -10 -11 -12

                 -13 -14 -15 -16))

(share-nths a 0 2)

 => #,(<array> (0 2 0 4) -1  -2  -3  -4

                         -9 -10 -11 -12)

(share-nths a 1 2)

 => #,(<array> (0 4 0 2) -1  -3  -5  -7

                         -9 -11 -13 -15)



STklos procedure

(share-column arr k) 

Shares whatever the second index is about. The result has one dimension less.

(define a (array (shape 0 2 0 2 0 2) -1 -2 -3 -4 -5 -6 -7 -8))

(share-column a 1) => #,(<array> (0 2 0 2) -3 -4 -7 -8)

(share-column a 0) => #,(<array> (0 2 0 2) -1 -2 -5 -6)

STklos procedure

(share-row arr k) 

Shares whatever the first index is about. The result has one dimension less.

(define a (array (shape 0 2 0 2 0 2) -1 -2 -3 -4 -5 -6 -7 -8))

(share-row a 0) => #,(<array> (0 2 0 2) -1 -2 -3 -4)

(share-row a 1) => #,(<array> (0 2 0 2) -5 -6 -7 -8)

STklos procedure

(share-array/origin arr k …) 

(share-array/origin arr index) 

change the origin of arr to k …, with index a vector or zero-based one-dimensional array that

contains k …

(define a (array (shape 0 2 0 2 ) -1 -2 -3 -4))

(share-array/origin  a 1 1) => #,(<array> (1 3 1 3) -1 -2 -3 -4)

STklos procedure

(array-copy+share array) 



Returns a copy of array. If array does not have its own internal data, but was built using share-

array, then the new array will be similar — it will be a copy of array, sharing the elements in the

same way.

STklos procedure

(array-size array) 

Returns the number of elements in array.

STklos procedure

(array-shape array) 

Returns the shape of array.

STklos procedure

(array→list array) 

Returns a list that contains a copy of the elements of array, in row-major order. This is not

recursive, and will not flatten the array.

STklos procedure

(array→vector array) 

Returns a vector that contains a copy of the elements of array, in row-major order. The new vector

does not share elements with the original array (it is a fresh copy). This is not recursive, and will

not flatten the array.

STklos procedure

(array-length array dim) 

Returns the length of dimension dim in array array.



STklos procedure

(array-map [shape] proc arr0 arr1 …) 

This procedure is similar to map for lists: it will run proc on an element of each of the arr0, arr1, …

arguments, storing the result in the equivalent position of a newly created array.

The shapes of the arrays must be the same.

The procedure will create a new array with shape shape (or arr0's shape, if shape was not specified).

STklos procedure

(array-map! array [shape] proc arr0 arr1 …) 

For each valid index idx, applies proc to the corresponding position in arr0, arr1, … and then sets the

same place in array to the result.

If shape is specified, it should specify a subarray of array, and only that section will be mapped.

STklos procedure

(array-append dim arr1 arr2 …) 

Appends arrays arr1, arr2, … along the specified dimension dim. The arrays must have equally many

dimensions and all other dimensions equally long.

(define a (array (shape 0 2 0 3) 11 22 33 44 55 66))

(define b (array (shape 0 3 0 3) -11 -22 -33 -44 -55 -66 -77 -88 -99))

(define c (array (shape 0 1 0 3) 'a 'b 'c))

(array-append 0 a b c) =>  #,(<array> (0 6 0 3)

                                      11  22  33

                                      44  55  66

                                     -11 -22 -33

                                     -44 -55 -66

                                     -77 -88 -99

                                       a   b   c)

STklos procedure



(array-share-count array) 

Returns the number of arrays that were built sharing array's elements through (share-array array

shape proc), and that were not yet garbage collected. Note that it may take a long time for an object

to be garbage collected automatically. It is possible to force a garbage collection pass by calling (gc),

but even that does not guarantee that a specific object will be collected.

STklos procedure

(array-copy array) 

Returns a copy of array. The new copy will have no data shared with any other array, even if the

argument array did.

STklos procedure

(array-for-each-index arr proc [index-object]) 

Will loop through all valid indices of array, applying proc to those indices.

If index-object is not provided, then proc must accept as many arguments as the number of

dimensions that the shape describes.

If index-object is provided, it is used as a place to store the indices, so proc must accept a vector or

an array (this is to avoid pushing and popping too many values when calling proc). index-object,

when present, must be aither a vector or array.

See the documentation of shape-for-each for more information on index-object.

STklos procedure

(tabulate-array shape proc) 

(tabulate-array shape proc idx) 

Returns a new array of shape shape, populated according to proc. Each valid index in shape is passed

to proc, and the result is place in the according array position.

idx is an object that may be used to store the indices, and it may be either a vector or an array. If it

is not present, or if it is #f, then an index vector will be created internally.



STklos procedure

(array-retabulate! arr shp proc [index-object]) 

Sets the elements of arr in shape to the value of proc at that index, using index-object if provided.

This is similar to tabulate-array!, except that the array is given by the user.

(define arr (array (shape 0 2 0 2) 'a 'b 'c 'd))

(array-retabulate! arr (shape 0 2 0 2) (lambda (x y) (+ 1 x y)))

arr => #,(<array> (0 2 0 2) 1 2 2 3)

STklos procedure

(transpose arr k …) 

Shares arr with permuted dimensions. Each dimension from 0 inclusive to rank exclusive must

appear once in k …

This is a generalized transpose. It can permute the dimensions any which way. The permutation is

provided by a permutation matrix: a square matrix of zeros and ones, with exactly one one in each

row and column, or a permutation of the rows of an identity matrix; the size of the matrix must

match the number of dimensions of the array.

The default permutation is [ 0 1 , 1 0 ] of course, but any permutation array can be specified,

and the shape array of the original array is then multiplied with it, and index column vectors of the

new array with its inverse, from left, to permute the rows appropriately.

(transpose (array (shape 0 4 0 4)

                  -1  -2   -3  -4

                  -5  -6   -7  -8

                  -9  -10 -11 -12

                  -13 -14 -15 -16))

 => #,(<array> (0 4 0 4)

              -1 -5  -9 -13

              -2 -6 -10 -14

              -3 -7 -11 -15

              -4 -8 -12 -16)

(transpose (array (shape 0 3 0 3 0 2)

                  -1 -2

                  -3 -4

                  -5 -6

                  -7 -8

                  -9 -10



                  -11 -12

                  -13 -14

                  -15 -16

                  -17 -18))

 => #,(<array> (0 2 0 3 0 3)

               -1  -7 -13

               -3  -9 -15

               -5 -11 -17

               -2  -8 -14

               -4 -10 -16

               -6 -12 -18)

srfi-27 — Source of random bits

SRFI-27 is fully supported. Using primitives random-integer or random-real automatically load this

SRFI.

srfi-28 — Basic Format Strings

SRFI-28 is fully supported. Note that STklos format is more general than the one defined this SRFI.

srfi-35 — Conditions

SRFI-35 is fully supported. See Section 7.3 for the predefined conditions and when it is required to

load this file.

srfi-36 — I/O Conditions

SRFI-36 is fully supported. See Section 7.3 Conditions) for the predefined conditions and when it is

required to load this file.

srfi-55 — Require-extension

SRFI-55 is fully supported. Furthermore, STklos also accepts the symbols defined in Table 2 in a

require-extension clause.

srfi-69 — Basic Hash Tables

SRFI-69 is fully supported. Note that the default comparison function in STklos is eq? whereas it is

equal? for the SRFI. Furthermore the hash functions defined in the SRFI are not defined by default

in STklos. To have a fully compliant SRFI-69 behaviour, you need use a require-feature in your

code.

srfi-88 — Keyword Objects

SRFI-88 is fully supported. The only difference between the keywords defined in the SRFI document

and the STklos keywords is on the zero-length keyword: For STklos, : is equivalent to the keyword

http://srfi.schemers.org/srfi-27/srfi-27.html
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#:||, whereas the SRFI considers that : is not a keyword but a symbol.

 To obtain the symbol : in STklos, you must use |:|.

srfi-116 — Immutable List Library

STklos implements the arrays of SRFI-116.

STklos procedure

(ipair a d) 

Returns a newly allocated ipair whose icar is a and whose icdr is d. The ipair is guaranteed to be

different (in the sense of eqv?) from every existing object.

STklos procedure

(ilist obj …) 

Returns a newly allocated ilist of its arguments.

   (ilist 'a (+ 3 4) 'c)            =>  (a 7 c)

   (ilist)                          =>  ()

Being an ilist, its CAR, CDR and all sublists are immutable.

STklos procedure

(xipair d a) 

The same as (lambda (d a) (ipair a d))

Of utility only as a value to be conveniently passed to higher-order procedures.

(xipair (iq b c) 'a) => (a b c)

The name stands for "eXchanged Immutable PAIR."

http://srfi.schemers.org/srfi-116/srfi-116.html


STklos procedure

(ipair* obj …) 

ipair* is like ilist except that the last argument to ipair* is used as the ,(emph "cdr") of the last

pair constructed.

   (ipair* 1 2 3)        => (1 2 . 3)

   (ipair* 1 2 3 '(4 5)) => (1 2 3 4 5)

   (ipair*)              => ()

STklos procedure

(make-ilist n [fill]) 

Returns an n-element ilist, whose elements are all the value fill. If the fill argument is not given, the

elements of the ilist may be arbitrary values.

(make-ilist 4 'c) => (c c c c)

STklos procedure

(ilist-tabulate n init-proc) 

Returns an n-element ilist. Element i of the ilist, where 0 ⇐ i < n, is produced by (init-proc i). No

guarantee is made about the dynamic order in which init-proc is applied to these indices.

(ilist-tabulate 4 values) => (0 1 2 3)

STklos procedure

(ilist-copy lst) 

Copies the spine of the argument, including the ilist tail.

STklos procedure



(iiota count [ start step ] 

Returns an ilist containing the elements

(start start+step … start+(count-1)*step)

The start and step parameters default to 0 and 1, respectively. This procedure takes its name from

the APL primitive.

(iiota 5) => (0 1 2 3 4)

(iiota 5 0 -0.1) => (0 -0.1 -0.2 -0.3 -0.4)

STklos procedure

(icar ipair) 

(icdr ipair) 

These procedures return the contents of the icar and icdr field of their argument, respectively. Note

that it is an error to apply them to the empty ilist.

(icar (iq a b c))       =>  a          (icdr (iq a b c))     =>  (b c)

(icar (iq (a) b c d))   =>  (a)        (icdr (iq (a) b c d)) =>  (b c d)

(icar (ipair 1 2))      =>  1          (icdr (ipair 1 2))    =>  2

(icar '())              =>  *error*    (icdr '())            =>  *error*

STklos procedure

(ipair? obj) 

Returns true and only if x is a proper ilist — that is, a ()-terminated ilist.

STklos procedure

(proper-ilist? x) 

(ilist? x) 

These identifiers are bound either to the same procedure. In either case, true is returned iff x is a

proper ilist — a ()-terminated ilist.



More carefully: The empty list is a proper ilist. An ipair whose icdr is a proper ilist is also a proper

ilist. Everything else is a dotted ilist. This includes non-ipair, non-() values (e.g. symbols, numbers,

mutable pairs), which are considered to be dotted ilists of length 0.

STklos procedure

(dotted-ilist? x) 

Returns true if x is a finite, non-nil-terminated ilist. That is, there exists an n >= 0 such that icdrn(x)

is neither an ipair nor (). This includes non-ipair, non-() values (e.g. symbols, numbers), which are

considered to be dotted ilists of length 0.

(dotted-ilist? x) = (not (proper-ilist? x))

STklos procedure

(not-ipair? x) 

This is the same as (lambda (x) (not (ipair? x)))

Provided as a procedure as it can be useful as the termination condition for ilist-processing

procedures that wish to handle all ilists, both proper and dotted.

STklos procedure

(null-ilist? lst) 

Ilist is a proper ilist. This procedure returns true if the argument is the empty list (), and false

otherwise. It is an error to pass this procedure a value which is not a proper ilist. This procedure is

recommended as the termination condition for ilist-processing procedures that are not defined on

dotted ilists.

STklos procedure

(ilist= elt= ilist1 …) 

Determines ilist equality, given an element-equality procedure. Proper ilist A equals proper ilist B if

they are of the same length, and their corresponding elements are equal, as determined by elt=. If



the element-comparison procedure’s first argument is from ilisti, then its second argument is from

ilisti+1, i.e. it is always called as (elt= a b) for a an element of ilist A, and b an element of ilist B.

In the n-ary case, every ilisti is compared to ilisti+1 (as opposed, for example, to comparing ilist1 to

ilisti, for i>1). If there are no ilist arguments at all, ilist= simply returns true.

It is an error to apply ilist= to anything except proper ilists. It cannot reasonably be extended to

dotted ilists, as it provides no way to specify an equality procedure for comparing the ilist

terminators.

Note that the dynamic order in which the elt= procedure is applied to pairs of elements is not

specified. For example, if ilist= is applied to three ilists, A, B, and C, it may first completely compare

A to B, then compare B to C, or it may compare the first elements of A and B, then the first elements

of B and C, then the second elements of A and B, and so forth.

The equality procedure must be consistent with eq?. That is, it must be the case that

(eq? x y) => (elt= x y)

Note that this implies that two ilists which are eq? are always ilist=, as well; implementations may

exploit this fact to "short-cut" the element-by-element comparisons.

(ilist= eq?) => #t       ; Trivial cases

(ilist= eq? (iq a)) => #t

STklos procedure

(list-immutable+! lst) 

(list-immutable! lst) 

Destructive versions of list→ilist: both procedures change their argument so it will become an

immutable list. List-immutable+! returns the list, while list-immutable! returns #void.

STklos procedure

(ifirst ipair) 

(isecond ipair) 

(ithird ipair) 

(ifourth ipair) 

(ififth ipair) 

(isixth ipair) 

(iseventh ipair) 

(ieighth ipair) 

(ininth ipair) 



(itenth ipair) 

Synonyms for car, cadr, caddr, …

(ithird '(a b c d e)) => c

STklos procedure

(icar+icdr ip) 

The fundamental ipair deconstructor. Returns two values: the icar and the icdrif ip.

STklos procedure

(itake x i) 

(idrop x i) 

(ilist-tail x i) 

itake returns the first i elements of ilist x. idrop returns all but the first i elements of ilist x. ilist-

tail is either the same procedure as idrop or else a procedure with the same behavior.

 (itake (iq a b c d e)  2) => (a b)

 (idrop (iq a b c d e)  2) => (c d e)

x may be any value — a proper or dotted ilist:

(itake (ipair 1 (ipair 2 (ipair 3 'd)))    => (1 2)

(idrop (ipair 1 (ipair 2 (ipair 3 'd))) 2) => (3 . d)

(itake (ipair 1 (ipair 2 (ipair 3 'd))) 3) => (1 2 3)

(idrop (ipair 1 (ipair 2 (ipair 3 'd))) 3) => d

For a legal i, itake and idrop partition the ilist in a manner which can be inverted with iappend:

(iappend (itake x i) (idrop x i)) = x

idrop is exactly equivalent to performing i icdr operations on x; the returned value shares a

common tail with x.

STklos procedure



(itake-right dilist i) 

(idrop-right dilist i) 

Itake-right returns the last i elements of dilist. Idrop-right returns all but the last i elements of

dilist.

(itake-right (iq a b c d e) 2) => (d e)

(idrop-right (iq a b c d e) 2) => (a b c)

The returned ilist may share a common tail with the argument ilist.

dilist may be any ilist, either proper or dotted:

(itake-right (iq ipair 1 (ipair 2 (ipair 3 'd))) 2) => (2 3 . d)

(idrop-right (ipair 1 (ipair 2 (ipair 3 'd))) 2)    => (1)

(itake-right (ipair 1 (ipair 2 (ipair 3 'd))) 0)    => d

(idrop-right (ipair 1 (ipair 2 (ipair 3 'd))) 0)    => (1 2 3)

For a legal i, itake-right and idrop-right partition the ilist in a manner which can be inverted with

iappend:

(iappend (itake dilist i) (idrop dilist i)) = dilist

Itake-right's return value is guaranteed to share a common tail with dilist.

STklos procedure

(isplit-at x i) 

Isplit-at splits the ilist x at index i, returning an ilist of the first i elements, and the remaining tail.

It is equivalent to

(values (itake x i) (idrop x i))

R
5
RS procedure

(ilast ipair) 

(last-ipair ipair) 



Ilast returns the last element of the non-empty, possibly dotted, ilist ipair. Last-ipair returns the

last ipair in the non-empty ilist pair.

(ilast (iq a b c))      => c

(last-ipair (iq a b c)) => (c)

STklos procedure

(ilength ilist) 

Returns the length of its argument. It is an error to pass a value to ilength which is not a proper ilist

(()-terminated).

The length of a proper ilist is a non-negative integer n such that icdr applied n times to the ilist

produces the empty list.

STklos procedure

(iappend ilist1 …) 

Returns an ilist consisting of the elements of ilist1 followed by the elements of the other ilist

parameters.

(iappend (iq x) (iq y))        =>  (x y)

(iappend (iq a) (iq b c d))    =>  (a b c d)

(iappend (iq a (b)) (iq (c)))  =>  (a (b) (c))

The resulting ilist is always newly allocated, except that it shares structure with the final ilisti

argument. This last argument may be any value at all; an improper ilist results if it is not a proper

ilist. All other arguments must be proper ilists.

(iappend (iq a b) (ipair 'c 'd))  =>  (a b c . d)

(iappend '() 'a)           =>  a

(iappend (iq x y))         =>  (x y)

(iappend)                  =>  ()

STklos procedure



(iconcatenate ilist-of-ilists) 

Appends the elements of its argument together. That is, iconcatenate returns the same as

(iapply iappend ilist-of-ilists)

or, equivalently,

(ireduce-right iappend '() ilist-of-ilists)

As with iappend, the last element of the input list may be any value at all.

STklos procedure

(ireverse ilist) 

Returns a newly allocated ilist consisting of the elements of ilist in reverse order.

(ireverse (iq a b c))              =>  (c b a)

(ireverse (iq a (b c) d (e (f))))  =>  ((e (f)) d (b c) a)

STklos procedure

(iappend-reverse rev-head tail) 

Iappend-reverse returns (iappend (ireverse rev-head) tail). It is provided because it is a common

operation — a common list-processing style calls for this exact operation to transfer values

accumulated in reverse order onto the front of another ilist, and because the implementation is

significantly more efficient than the simple composition it replaces. (But note that this pattern of

iterative computation followed by a reverse can frequently be rewritten as a recursion, dispensing

with the reverse and iappend-reverse steps, and shifting temporary, intermediate storage from the

heap to the stack, which is typically a win for reasons of cache locality and eager storage

reclamation.)

STklos procedure

(izip ilist1 ilist2 …) 



Returns the same as (lambda ilists (iapply imap ilist ilists))

If izip is passed n ilists, it returns an ilist as long as the shortest of these ilists, each element of

which is an n-element ilist comprised of the corresponding elements from the parameter ilists.

(izip (iq one two three)

     (iq 1 2 3)

     (iq odd even odd even odd even odd even))

    => ((one 1 odd) (two 2 even) (three 3 odd))

(izip (iq 1 2 3)) => ((1) (2) (3))

STklos procedure

(iunzip1 ilist) 

(iunzip2 ilist) 

(iunzip3 ilist) 

(iunzip4 ilist) 

(iunzip5 ilist) 

Iunzip1 takes an ilist of ilists, where every ilist must contain at least one element, and returns an

ilist containing the initial element of each such ilist. That is, it returns (imap icar ilists). Iunzip2

takes an ilist of ilists, where every ilist must contain at least two elements, and returns two values:

an ilist of the first elements, and an ilist of the second elements. Iunzip3 does the same for the first

three elements of the ilists, and so forth.

(iunzip2 (iq (1 one) (2 two) (3 three))) =>

    (1 2 3)

    (one two three)

STklos procedure

(icount pred ilist1 ilist2 …) 

Pred is a procedure taking as many arguments as there are ilists and returning a single value. It is

applied element-wise to the elements of the ilists, and a count is tallied of the number of elements

that produce a true value. This count is returned. count is "iterative" in that it is guaranteed to

apply pred to the ilist elements in a left-to-right order. The counting stops when the shortest ilist

expires.

(icount even? (iq 3 1 4 1 5 9 2 5 6))            => 3

(icount < (iq 1 2 4 8) (iq 2 4 6 8 10 12 14 16)) => 3



STklos procedure

(imap proc ilist1 ilist2 …) 

proc is a procedure taking as many arguments as there are ilist arguments and returning a single

value. imap applies proc element-wise to the elements of the ilists and returns an ilist of the results,

in order. The dynamic order in which proc is applied to the elements of the ilists is unspecified.

(imap icadr (iq (a b) (d e) (g h))) =>  (b e h)

(imap (lambda (n) (expt n n))

     (iq 1 2 3 4 5))

    =>  (1 4 27 256 3125)

(imap + (iq 1 2 3) (iq 4 5 6)) =>  (5 7 9)

(let ((count 0))

  (imap (lambda (ignored)

         (set! count (+ count 1))

         count)

       (iq a b))) =>  (1 2) or (2 1)

STklos procedure

(ifor-each proc ilist1 ilist2 …) 

The arguments to ifor-each are like the arguments to imap, but ifor-each calls proc for its side

effects rather than for its values. Unlike imap, ifor-each is guaranteed to call proc on the elements of

the ilists in order from the first element(s) to the last, and the value returned by ifor-each is

unspecified.

(let ((v (make-vector 5)))

  (ifor-each (lambda (i)

              (vector-set! v i (* i i)))

            (iq 0 1 2 3 4))

  v)  =>  #(0 1 4 9 16)

STklos procedure



(ifold kons knil ilist1 ilist2 …) 

The fundamental ilist iterator.

First, consider the single ilist-parameter case. If ilist1 = (e1 e2 … en), then this procedure returns

  (kons en ... (kons e2 (kons e1 knil)) ... )

That is, it obeys the (tail) recursion

(ifold kons knil lis) = (ifold kons (kons (icar lis) knil) (icdr lis))

(ifold kons knil '()) = knil

Examples:

  (ifold + 0 lis)                    ; Add up the elements of LIS.

  (ifold ipair '() lis)              ; Reverse LIS.

  (ifold ipair tail rev-head)        ; See APPEND-REVERSE.

;; How many symbols in LIS?

(ifold (lambda (x count) (if (symbol? x) (+ count 1) count))

      0

      lis)

;; Length of the longest string in LIS:

(ifold (lambda (s max-len) (max max-len (string-length s)))

      0

      lis)

If n ilist arguments are provided, then the kons function must take n+1 parameters: one element

from each ilist, and the "seed" or fold state, which is initially knil. The fold operation terminates

when the shortest ilist runs out of values:

(ifold ipair* '() (iq a b c) (iq 1 2 3 4 5)) => (c 3 b 2 a 1)

STklos procedure

(iunfold p f g seed [tail-gen]) 

Iunfold is best described by its basic recursion:



(iunfold p f g seed) =

    (if (p seed) (tail-gen seed)

        (ipair (f seed)

              (iunfold p f g (g seed))))

p        Determines when to stop unfolding.

f        Maps each seed value to the corresponding ilist element.

g        Maps each seed value to next seed value.

seed     The "state" value for the unfold.

tail-gen Creates the tail of the ilist; defaults to (lambda (x) '())

In other words, we use g to generate a sequence of seed values seed, g(seed), g2(seed), g3(seed), …

These seed values are mapped to ilist elements by f, producing the elements of the result ilist in a

left-to-right order. P says when to stop.

Iunfold is the fundamental recursive ilist constructor, just as ifold-right is the fundamental

recursive ilist consumer. While iunfold may seem a bit abstract to novice functional programmers,

it can be used in a number of ways:

;; Ilist of squares: 1^2 ... 10^2

(iunfold (lambda (x) (> x 10))

         (lambda (x) (* x x))

         (lambda (x) (+ x 1))

         1)

(iunfold null-ilist? icar icdr lis) ; Copy a proper ilist.

;; Read current input port into an ilist of values.

(iunfold eof-object? values (lambda (x) (read)) (read))

;; Copy a possibly non-proper ilist:

(iunfold not-ipair? icar icdr lis

         values)

;; Append HEAD onto TAIL:

(iunfold null-ilist? icar icdr head

        (lambda (x) tail))

Interested functional programmers may enjoy noting that ifold-right and iunfold are in some sense

inverses. That is, given operations knull?, kar, kdr, kons, and knil satisfying

(kons (kar x) (kdr x)) = x and (knull? knil) = #t

then



(ifold-right kons knil (iunfold knull? kar kdr x)) = x

and

(iunfold knull? kar kdr (ifold-right kons knil x)) = x.

This combinator sometimes is called an "anamorphism;" when an explicit tail-gen procedure is

supplied, it is called an "apomorphism."

STklos procedure

(ipair-fold kons knil ilist1 ilist2 …) 

Analogous to fold, but kons is applied to successive sub-ilists of the ilists, rather than successive

elements — that is, kons is applied to the ipairs making up the lists, giving this (tail) recursion:

(ipair-fold kons knil lis) = (let ((tail (icdr lis)))

                              (ipair-fold kons (kons lis knil) tail))

(ipair-fold kons knil '()) = knil

Example:

(ipair-fold ipair '() (iq a b c)) => ((c) (b c) (a b c))

STklos procedure

(ireduce f ridentity ilist) 

Ireduce is a variant of ifold.

Ridentity should be a "right identity" of the procedure f — that is, for any value x acceptable to f,

 (f x ridentity) = x

Ireduce has the following definition:

If ilist = (), return ridentity;

Otherwise, return (ifold f (icar ilist) (icdr ilist)).



…in other words, we compute (ifold f ridentity ilist).

Note that ridentity is used only in the empty-list case. You typically use ireduce when applying f is

expensive and you’d like to avoid the extra application incurred when ifold applies f to the head of

ilist and the identity value, redundantly producing the same value passed in to f. For example, if f

involves searching a file directory or performing a database query, this can be significant. In

general, however, ifold is useful in many contexts where ireduce is not (consider the examples

given in the ifold definition — only one of the five folds uses a function with a right identity. The

other four may not be performed with ireduce).

;; take the max of an ilist of non-negative integers.

(ireduce max 0 nums) ; i.e., (iapply max 0 nums)

STklos procedure

(ifold-right kons knil ilist1 ilist2 …) 

The fundamental ilist recursion operator.

First, consider the single ilist-parameter case. If ilist1 = (e1 e2 … en), then this procedure

returns (kons e1 (kons e2 … (kons en knil)))

That is, it obeys the recursion

(ifold-right kons knil lis) = (kons (icar lis) (ifold-right kons knil (icdr lis)))

(ifold-right kons knil '()) = knil

Examples:

(ifold-right ipair '() lis)          ; Copy LIS.

;; Filter the even numbers out of LIS.

(ifold-right (lambda (x l) (if (even? x) (ipair x l) l)) '() lis))

If n ilist arguments are provided, then the kons procedure must take n+1 parameters: one element

from each ilist, and the "seed" or fold state, which is initially knil. The fold operation terminates

when the shortest ilist runs out of values:

(ifold-right ipair* '() (iq a b c) (iq 1 2 3 4 5)) => (a 1 b 2 c 3)

STklos procedure



(iunfold-right p f g seed [tail]) 

Iunfold-right constructs an ilist with the following loop:

(let lp ((seed seed) (lis tail))

  (if (p seed) lis

      (lp (g seed)

          (ipair (f seed) lis))))

p         Determines when to stop unfolding.

f         Maps each seed value to the corresponding ilist element.

g         Maps each seed value to next seed value.

seed      The "state" value for the unfold.

tail      ilist terminator; defaults to '().

In other words, we use g to generate a sequence of seed values

seed, g(seed), g2(seed), g3(seed), ...

These seed values are mapped to ilist elements by f, producing the elements of the result ilist in a

right-to-left order. P says when to stop.

Iunfold-right is the fundamental iterative ilist constructor, just as ifold is the fundamental

iterative ilist consumer. While iunfold-right may seem a bit abstract to novice functional

programmers, it can be used in a number of ways:

;; Ilist of squares: 1^2 ... 10^2

(iunfold-right zero?

              (lambda (x) (* x x))

              (lambda (x) (- x 1))

              10)

;; Reverse a proper ilist.

(iunfold-right null-ilist? icar icdr lis)

;; Read current input port into an ilist of values.

(iunfold-right eof-object? values (lambda (x) (read)) (read))

;; (iappend-reverse rev-head tail)

(iunfold-right null-ilist? icar icdr rev-head tail)

Interested functional programmers may enjoy noting that ifold and iunfold-right are in some sense

inverses. That is, given operations knull?, kar, kdr, kons, and knil satisfying



(kons (kar x) (kdr x)) = x and (knull? knil) = #t

then

(ifold kons knil (iunfold-right knull? kar kdr x)) = x

and

(iunfold-right knull? kar kdr (ifold kons knil x)) = x.

STklos procedure

(ipair-fold-right kons knil ilist1 ilist2 …) 

Holds the same relationship with ifold-right that ipair-fold holds with ifold. Obeys the recursion

 (ipair-fold-right kons knil lis) =

     (kons lis (ipair-fold-right kons knil (icdr lis)))

 (ipair-fold-right kons knil '()) = knil

Example:

(ipair-fold-right ipair '() (iq a b c)) => ((a b c) (b c) (c))

STklos procedure

(ireduce-right f ridentity ilist) 

Ireduce-right is the fold-right variant of ireduce. It obeys the following definition:

(ireduce-right f ridentity '()) = ridentity

(ireduce-right f ridentity (iq e1)) = (f e1 ridentity) = e1

(ireduce-right f ridentity (iq e1 e2 ...)) =

    (f e1 (ireduce f ridentity (e2 ...)))

…in other words, we compute (ifold-right f ridentity ilist).



;; Append a bunch of ilists together.

;; I.e., (iapply iappend ilist-of-ilists)

(ireduce-right iappend '() ilist-of-ilists)

STklos procedure

(iappend-map f ilist1 ilist2 …) 

Equivalent to

(iapply iappend (imap f ilist1 ilist2 ...))

and

(iapply iappend (imap f ilist1 ilist2 ...))

Map f over the elements of the ilists, just as in the imap function. However, the results of the

applications are appended together (using iappend) to make the final result.

The dynamic order in which the various applications of f are made is not specified.

Example:

(iappend-map (lambda (x) (ilist x (- x))) (iq 1 3 8))

    => (1 -1 3 -3 8 -8)

STklos procedure

(ipair-for-each f ilist1 ilist2 …) 

Like ifor-each, but f is applied to successive sub-ilists of the argument ilists. That is, f is applied to

the cells of the ilists, rather than the ilists' elements. These applications occur in left-to-right order.

(ipair-for-each (lambda (ipair) (display ipair) (newline)) (iq a b c)) ==>

    (a b c)

    (b c)

    (c)



STklos procedure

(ifilter-map f ilist1 ilist2 …) 

Like imap, but only true values are saved.

(ifilter-map (lambda (x) (and (number? x) (* x x))) (iq a 1 b 3 c 7))

    => (1 9 49)

The dynamic order in which the various applications of f are made is not specified.

R
5
RS procedure

(imap-in-order f ilist1 ilist2 …) 

A variant of the imap procedure that guarantees to apply f across the elements of the ilisti

arguments in a left-to-right order. This is useful for mapping procedures that both have side effects

and return useful values.

STklos procedure

(ifilter pred ilist ) 

Return all the elements of ilist that satisfy predicate pred. The ilist is not disordered — elements

that appear in the result ilist occur in the same order as they occur in the argument ilist. The

returned ilist may share a common tail with the argument ilist. The dynamic order in which the

various applications of pred are made is not specified.

(ifilter even? (iq 0 7 8 8 43 -4)) => (0 8 8 -4)

STklos procedure

(ipartition pred ilist) 

Partitions the elements of ilist with predicate pred, and returns two values: the ilist of in-elements

and the ilist of out-elements. The ilist is not disordered — elements occur in the result ilists in the

same order as they occur in the argument ilist. The dynamic order in which the various

applications of pred are made is not specified. One of the returned ilists may share a common tail



with the argument ilist.

(ipartition symbol? (iq one 2 3 four five 6)) =>

    (one four five)

    (2 3 6)

STklos procedure

(iremove pred ilist) 

Returns ilist without the elements that satisfy predicate pred, similar to

(lambda (pred ilist) (ifilter (lambda (x) (not (pred x))) ilist))

The ilist is not disordered — elements that appear in the result ilist occur in the same order as they

occur in the argument ilist. The returned ilist may share a common tail with the argument ilist. The

dynamic order in which the various applications of pred are made is not specified.

(iremove even? (iq 0 7 8 8 43 -4)) => (7 43)

STklos procedure

(imember x ilist [=]) 

(imemq x ilist) 

(imemv x ilist) 

These procedures return the first sub-ilist of ilis`t whose icar is `x, where the sub-ilists of ilist

are the non-empty ilists returned by (idrop ilist i) for i less than the length of ilist. If x does not

occur in ilist, then false is returned. Imemq uses eq? to compare x with the elements of ilist, while

imemv uses eqv?, and imember uses equal?.

(imemq 'a (iq a b c))           =>  (a b c)

(imemq 'b (iq a b c))           =>  (b c)

(imemq 'a (iq b c d))           =>  #f

(imemq (list 'a)

        (ilist 'b '(a) 'c))     =>  #f

(imember (list 'a)

        (ilist 'b '(a) 'c)))    =>  ((a) c)

(imemq 101 (iq 100 101 102))    =>  *unspecified*

(imemv 101 (iq 100 101 102))    =>  (101 102)



The comparison procedure is used to compare the elements ei of ilist to the key x in this way:

(= x ei) ; ilist is (E1 ... En)

That is, the first argument is always x, and the second argument is one of the ilist elements. Thus

one can reliably find the first element of ilist that is greater than five with (imember 5 ilist <)

Note that fully general ilist searching may be performed with the ifind-tail and ifind procedures,

e.g.

(ifind-tail even? ilist) ; Find the first elt with an even key.

R
5
RS procedure

(ifind pred ilist) 

Return the first element of ilist that satisfies predicate pred; false if no element does.

(ifind even? (iq 3 1 4 1 5 9)) => 4

Note that ifind has an ambiguity in its lookup semantics — if ifind returns false, you cannot tell (in

general) if it found a false element that satisfied pred, or if it did not find any element at all. In many

situations, this ambiguity cannot arise — either the ilist being searched is known not to contain any

false elements, or the ilist is guaranteed to have an element satisfying pred. However, in cases

where this ambiguity can arise, you should use ifind-tail instead of ifind, since ifind-tail has no

such ambiguity:

(cond ((ifind-tail pred lis) => (lambda (ipair) ...)) ; Handle (icar ipair)

      (else ...)) ; Search failed.

STklos procedure

(ifind-tail pred ilist) 

Return the first ipair of ilist whose icar satisfies pred. If no ipair does, return false.

Ifind-tail can be viewed as a general-predicate variant of the imember function.

Examples:



(ifind-tail even? (iq 3 1 37 -8 -5 0 0)) => (-8 -5 0 0)

(ifind-tail even? (iq 3 1 37 -5)) => #f

;; IMEMBER X LIS:

(ifind-tail (lambda (elt) (equal? x elt)) lis)

Ifind-tail is essentially idrop-while, where the sense of the predicate is inverted: Ifind-tail

searches until it finds an element satisfying the predicate; idrop-while searches until it finds an

element that doesn’t satisfy the predicate.

STklos procedure

(iany pred ilist1 ilist2 …) 

Applies the predicate across the ilists, returning true if the predicate returns true on any

application.

If there are n ilist arguments ilist1 … ilistn, then pred must be a procedure taking n arguments

and returning a boolean result.

Iany applies pred to the first elements of the ilisti parameters. If this application returns a true

value, iany immediately returns that value. Otherwise, it iterates, applying pred to the second

elements of the ilisti parameters, then the third, and so forth. The iteration stops when a true

value is produced or one of the ilists runs out of values; in the latter case, iany returns false. The

application of pred to the last element of the ilists is a tail call.

Note the difference between ifind and iany — ifind returns the element that satisfied the

predicate; iany returns the true value that the predicate produced.

Like ievery, `iany’s name does not end with a question mark — this is to indicate that it does not

return a simple boolean (true or false), but a general value.

(iany integer? (iq a 3 b 2.7))   => #t

(iany integer? (iq a 3.1 b 2.7)) => #f

(iany < (iq 3 1 4 1 5)

       (iq 2 7 1 8 2)) => #t

STklos procedure

(ievery pred ilist1 ilist2 …) 

Applies the predicate across the ilists, returning true if the predicate returns true on every



application.

If there are n ilist arguments ilist1 … ilistn, then pred must be a procedure taking n arguments

and returning a boolean result.

Ievery applies pred to the first elements of the ilisti parameters. If this application returns false,

ievery immediately returns false. Otherwise, it iterates, applying pred to the second elements of the

ilisti parameters, then the third, and so forth. The iteration stops when a false value is produced or

one of the ilists runs out of values. In the latter case, ievery returns the true value produced by its

final application of pred. The application of pred to the last element of the ilists is a tail call.

If one of the ilisti has no elements, ievery simply returns true.

Like iany, `ievery’s name does not end with a question mark — this is to indicate that it does not

return a simple boolean (true or false), but a general value.

R
5
RS procedure

(ilist-index pred ilist1 ilist2 …) 

Returns the index of the leftmost element that satisfies pred.

If there are n ilist arguments ilist1 … ilistn, then pred must be a function taking n arguments

and returning a boolean result.

Ilist-index applies pred to the first elements of the ilisti parameters. If this application returns

true, ilist-index immediately returns zero. Otherwise, it iterates, applying pred to the second

elements of the ilisti parameters, then the third, and so forth. When it finds a tuple of ilist

elements that cause pred to return true, it stops and returns the zero-based index of that position in

the ilists.

The iteration stops when one of the ilists runs out of values; in this case, ilist-index returns false.

ilist-index even? (iq 3 1 4 1 5 9)) => 2

ilist-index < (iq 3 1 4 1 5 9 2 5 6) (iq 2 7 1 8 2)) => 1

ilist-index = (iq 3 1 4 1 5 9 2 5 6) (iq 2 7 1 8 2)) => #f

STklos procedure

(itake-while pred ilist) 

Returns the longest initial prefix of ilist whose elements all satisfy the predicate pred.



(itake-while even? (iq 2 18 3 10 22 9)) => (2 18)

STklos procedure

(idrop-while pred ilist) 

Drops the longest initial prefix of ilist whose elements all satisfy the predicate pred, and returns

the rest of the ilist.

(idrop-while even? (iq 2 18 3 10 22 9)) => (3 10 22 9)

STklos procedure

(ispan pred ilist) 

(ibreak pred ilist) 

Ispan splits the ilist into the longest initial prefix whose elements all satisfy pred, and the remaining

tail. Ibreak inverts the sense of the predicate: the tail commences with the first element of the input

ilist that satisfies the predicate.

In other words: ispan finds the initial span of elements satisfying pred, and ibreak breaks the ilist at

the first element satisfying pred.

Ispan is equivalent to

(values (itake-while pred ilist)

        (idrop-while pred ilist))

(ispan even? (iq 2 18 3 10 22 9)) =>

  (2 18)

  (3 10 22 9)

(ibreak even? (iq 3 1 4 1 5 9)) =>

  (3 1)

  (4 1 5 9)

STklos procedure

(idelete x ilist [=]) 



Idelete uses the comparison procedure =, which defaults to equal?, to find all elements of ilist that

are equal to x, and deletes them from ilist. The dynamic order in which the various applications of

= are made is not specified.

The ilist is not disordered — elements that appear in the result ilist occur in the same order as they

occur in the argument ilist. The result may share a common tail with the argument ilist.

Note that fully general element deletion can be performed with the iremove procedures, e.g.:

;; idelete all the even elements from LIS:

(iremove even? lis)

The comparison procedure is used in this way: (= x ei). That is, x is always the first argument, and

an ilist element is always the second argument. The comparison procedure will be used to compare

each element of ilist exactly once; the order in which it is applied to the various ei is not specified.

Thus, one can reliably remove all the numbers greater than five from an ilist with (idelete 5 ilist

<).

STklos procedure

(ialist-cons key datum ialist) 

Constructs a new ialist entry mapping key → datum onto ialist. This is the same as

(lambda (key datum ialist) (ipair (ipair key datum) ialist))

STklos procedure

(idelete-duplicates ilist [=]) 

Idelete-duplicates removes duplicate elements from the ilist argument. If there are multiple

equal elements in the argument ilist, the result ilist only contains the first or leftmost of these

elements in the result. The order of these surviving elements is the same as in the original ilist —

idelete-duplicates does not disorder the ilist (hence it is useful for "cleaning up" immutable

association lists).

The = parameter is used to compare the elements of the ilist; it defaults to equal?. If x comes before

y in ilist, then the comparison is performed (= x y). The comparison procedure will be used to

compare each pair of elements in ilist no more than once; the order in which it is applied to the

various pairs is not specified.

Although idelete-duplicates can be implemented so it runs in time O(n2) for n-element ilists, the



STklos implementation runs in linear expected time.

(idelete-duplicates (iq a b a c a b c z)) => (a b c z)

;; Clean up an ialist:

(idelete-duplicates (iq (a . 3) (b . 7) (a . 9) (c . 1))

                   (lambda (x y) (eq? (icar x) (icar y))))

    => ((a . 3) (b . 7) (c . 1))

STklos procedure

(iassoc key ialist [=] → ipair or #f 

(iassq key ialist → ipair or #f 

(iassv key ialist → ipair or #f 

Ialist must be an immutable association list — an ilist of ipairs. These procedures find the first

ipair in ialist whose icar field is key, and returns that ipair. If no ipair in ialist has key as its icar,

then false is returned. Iassq uses eq? to compare key with the icar fields of the ipairs in ialist, while

iassv uses eqv? and iassoc uses equal?.

(define e (iq (a 1) (b 2) (c 3)))

(iassq 'a e)                               =>  (a 1)

(iassq 'b e)                               =>  (b 2)

(iassq 'd e)                               =>  #f

(iassq (ilist 'a) (iq ((a)) ((b)) ((c))))  =>  #f

(iassoc '(a) (ilist '((a)) '((b)) '((c)))) =>  ((a))

(iassq 5 (iq (2 3) (5 7) (11 13)))         =>  *unspecified*

(iassv 5 (iq (2 3) (5 7) (11 13)))         =>  (5 7)

The comparison procedure is used to compare the elements ei of ilist to the key parameter in this

way:

(= key (icar ei)) ; ilist is (E1 ... En)

That is, the first argument is always key, and the second argument is one of the ilist elements. Thus

one can reliably find the first entry of ialist whose key is greater than five with (iassoc 5 ialist <).

Note that fully general ialist searching may be performed with the ifind-tail and ifind procedures,

e.g.

;; Look up the first association in ialist with an even key:

(ifind (lambda (a) (even? (icar a))) ialist)



STklos procedure

(ialist-delete key ialist [=]) 

Ialist-delete deletes all associations from ialist with the given key, using key-comparison

procedure =, which defaults to equal?. The dynamic order in which the various applications of = are

made is not specified.

Return values may share common tails with the ialist argument. The ialist is not disordered —

elements that appear in the result ialist occur in the same order as they occur in the argument

ialist.

The comparison procedure is used to compare the element keys ki of ialist’s entries to the key

parameter in this way: (= key ki). Thus, one can reliably remove all entries of ialist whose key is

greater than five with (ialist-delete 5 ialist <)

STklos procedure

(replace-icar ipair object) 

(replace-icdr ipair object) 

Replace-icar returns an ipair with object in the icar field and the icdr of ipair in the icdr field.

Replace-icdr returns an ipair with object in the icdr field and the icar of ipair in the icar field.

STklos procedure

(list→ilist lst) 

(ilist→list lst) 

These procedures return an ilist and a list respectively that have the same elements as the

argument. The tails of dotted (i)lists are preserved in the result, which makes the procedures not

inverses when the tail of a dotted ilist is a list or vice versa. The empty list is converted to itself.

It is an error to apply list→ilist to a circular list.

STklos procedure

(pair→ipair pair) 

(ipair→pair ipair) 



These procedures, which are inverses, return an ipair and a pair respectively that have the same

(i)car and (i)cdr fields as the argument.

STklos procedure

(tree→itree object) 

(itree→tree object) 

These procedures walk a tree of pairs or ipairs respectively and make a deep copy of it, returning

an isomorphic tree containing ipairs or pairs respectively. The result may share structure with the

argument. If the argument is not of the expected type, it is returned.

These procedures are not inverses in the general case. For example, a pair of ipairs would be

converted by tree→itree to an ipair of ipairs, which if converted by itree→tree would produce a pair

of pairs.

STklos procedure

(gtree→itree object) 

(gtree→tree object) 

These procedures walk a generalized tree consisting of pairs, ipairs, or a combination of both, and

make a deep copy of it, returning an isomorphic tree containing only ipairs or pairs respectively.

The result may share structure with the argument. If the argument is neither a pair nor an ipair, it

is returned.

STklos procedure

(iapply procedure object … ilist) 

The iapply procedure is an analogue of apply whose last argument is an ilist rather than a list. It is

equivalent to

(apply procedure object ... (ilist->list ilist))

srfi-138 — Compiling Scheme programs to executables

SRFI-138 is fully supported. The stklos-compile program conforms to SRFI 138, accepting all the

required command line options.

The -D x flag of stklos-compile will define a feature named x for use with cond-expand in the

http://srfi.schemers.org/srfi-138/srfi-138.html


compiled code only. It will not include x in the features list of the runtime.

srfi-145 — Assumptions

SRFI-145 is fully supported. See the assume special form.

srfi-169 — Underscores in numbers

SRFI-169 is fully supported. See parameter accept-srfi-169-numbers to eventually forbid the usage

of underscores in numbers.

srfi-216 — SICP Prerequisites (Portable)

SRFI-216 is fully supported. However, it defines the constant stream-null and the predicate stream-

null? which are incompatible with the ones defined in the (stream primitive) library used by SRFI-

41 or SRFI-221. Prefix the imported symbols of this SRFI, if you plan to use it with one of the

previous libraries.

srfi-230 — Atomic Operations

SRFI-238 is fully supported if STklos was compiled with Posix threads. If STklos was compiled

without thread support, the module (srfi 230) is defined, but it exports nothing.

srfi-238 — Codesets

SRFI-238 is fully supported. Furthermore, STklos adds the functions codeset-list and make-codeset.

STklos procedure

(codeset-list) 

Retuns a list of known codeset names.

(codeset-list) => (errno signal)

STklos procedure

(make-codeset name lst) 

http://srfi.schemers.org/srfi-145/srfi-145.html
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returns a new codeset object of the given name (a symbol). The list lst is a list of triplets (code-

number symbol message) where symbol and message can be #f if code-number has no associated name

or message.

 (define cs

     (make-codeset 'foo

                   '((1   OK    "Everything is OK")

                     (1   YES   #f)                  ; Other name for OK

                     (2   KO    "We have a problem")

                     (2   NO    #f)                  ; Other name for KO

                     (3   MAYBE "To be determined")

                     (404 #f    "Not found"))))      ; No symbolic name
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Appendix A: STklos Idiosyncrasies

A.1. STklos libraries

This section describes the standard libraries provided by STklos.

A.1.1. The (scheme …) Libraries

R
7
RS Small Libraries

STklos offers all the libraries defined by R
7
RS:

• base

• case-lambda

• char

• complex

• cxr

• eval

• file

• inexact

• lazy

• load

• process-context

• r5rs

• read

• repl

• time

• write

See the [R7RS] document for more information.

R
7
RS Large Libraries

STklos supports some libraries of the (under development) R
7
RS Large editions.

For now, supported libraries of the Red edition are

• bytevector (R
6
RS bytevectors)

• box (srfi 111)

• charset (srfi 14)

• comparator (srfi 128)



• generator (srfi 158) — Red edition included SRFI 121, but it was superseded by SRFI 158.

• hash-table (srfi 125)

• ideque (srfi 134)

• ilist (srfi 116)

• list (srfi 1)

• list-queue (srfi 117)

• lseq (srfi 127)

• set (srfi 113)

• sort (srfi 132)

• stream (srfi 41)

• text (srfi 135)

• vector (srfi 133)

For now, supported libraries of the Tangerine edition are

• bitwise (srfi 151)

• bytevector (scheme bytevector)- not a SRFI: this one is a chapter from R6RS.

• division (srfi 141)

• fixnum (srfi 143)

• flonum (srfi 144)

• generator (srfi 158)

• vector @ (srfi 160)

(scheme bytevector) functions

Importing (scheme bytevector) gives access to the supplemental following bytevector functions.

STklos procedure

(bytevector-s8-ref bytevector k) 

The bytevector-s8-ref procedure returns the byte at index k of bytevector, as a signed byte.

(let ((b1 (make-bytevector 16 -127))

      (b2 (make-bytevector 16 255)))

  (list

    (bytevector-s8-ref b1 0)

    (bytevector-u8-ref b1 0)

    (bytevector-s8-ref b2 0)

    (bytevector-u8-ref b2 0)))



=> (-127 129 -1 255)

STklos procedure

(bytevector-s8-set! bytevector k byte) 

K must be a valid index of bytevector. The bytevector-s8-set! procedure stores the two’s-

complement representation of byte in element k of bytevector. This procedure return an

unspecified value.

(let ((b (make-bytevector 16 -127)))

  (bytevector-s8-set! b 0 -126)

  (bytevector-u8-set! b 1 246)

  (list

    (bytevector-s8-ref b 0)

    (bytevector-u8-ref b 0)

    (bytevector-s8-ref b 1)

    (bytevector-u8-ref b 1)))

  => (-126 130 -10 246)

STklos procedure

(bytevector-fill! bytevector fill ) 

The fill argument is as in the description of the make-bytevector procedure. The bytevector-fill!

procedure stores fill in every element of bytevector and returns unspecified values. Analogous to

vector-fill!.

STklos procedure

(bytevector=? bytevector1 bytevector2 ) 

Returns true if bytevector1 and bytevector2 are equal—that is, if they have the same length and

equal bytes at all valid indices. It returns false otherwise.

STklos procedure

(bytevector-uint-ref bytevector k endianness size) 



(bytevector-sint-ref bytevector k endianness size) 

(bytevector-uint-set! bytevector k n endianness size) 

(bytevector-sint-set! bytevector k n endianness size) 

The bytevector-uint-ref procedure retrieves the exact integer object corresponding to the unsigned

representation of size size and specified by endianness at indices k , … , k + size − 1.

The bytevector-sint-ref procedure retrieves the exact integer object corresponding to the two’s-

complement representation of size size and specified by endianness at indices k , … , k + size −

1.

For bytevector-uint-set!, n must be an exact integer object in the interval {0, … , 256^size − 1}.

The bytevector-uint-set! procedure stores the unsigned representation of size size and specified

by endianness into bytevector at indices k , … , k + size − 1.

For bytevector-sint-set!, n must be an exact integer object in the interval {−256^size /2, … ,

256^size /2 − 1}. Bytevector-sint-set! stores the two’s-complement representation of size size and

specified by endianness into bytevector at indices k , … , k + size − 1.

The …-set! procedures return unspecified values.

(define b (make-bytevector 16 -127))

(bytevector-uint-set! b 0 (- (expt 2 128) 3)

                      (endianness little) 16)

(bytevector-uint-ref b 0 (endianness little) 16)

 => #xfffffffffffffffffffffffffffffffd

(bytevector-sint-ref b 0 (endianness little) 16)

 => -3

(bytevector->u8-list b)

 => (253 255 255 255 255 255 255 255

     255 255 255 255 255 255 255 255)

(bytevector-uint-set! b 0 (- (expt 2 128) 3)

                      (endianness big) 16)

(bytevector-uint-ref b 0 (endianness big) 16)

 => #xfffffffffffffffffffffffffffffffd

(bytevector-sint-ref b 0 (endianness big) 16)

 =>-3

(bytevector->u8-list b)

 => (255 255 255 255 255 255 255 255

     255 255 255 255 255 255 255 253))



R
5
RS procedure

(endianness endianness-symbol) 

The name of endianness-symbol must be a symbol describing an endianness. An implementation

must support at least the symbols big and little, but may support other endianness symbols.

(endianness endianness-symbol) evaluates to the symbol named endianness-symbol. Whenever one of

the procedures operating on bytevectors accepts an endianness as an argument, that argument

must be one of these symbols. It is a syntax violation for endianness-symbol to be anything other

than little or big.

STklos procedure

(native-endianness) 

Returns the endianness symbol of the underlying machine.

A.1.2. The (srfi …) Libraries

All the SRFI supported by STklos are placed under the srfi meta library and their name is SRFI

number. Hence, to use the exported symbols of SRFI-1, you’ll have to import the (srfi 1) library.

See Chapter 13 for more information

A.1.3. The (stklos …) Libraries

This section describes the standard libraries which are placed under the stklos meta library. Note

that STklos extensions can add some libraries in the stklos meta library; they will be described in

the extension documentation.

(stklos itrie) Library

This library was designed by Jerônimo Pellegrini (@jpellegrini).

 Small description needed

The symbols exported by (stklos itrie) are described below:

STklos procedure

(alist→fxmapping alist) → fxmapping 

Returns a newly allocated fxmapping containing the associations of alist. It is an error if the car of

http://srfi.schemers.org/srfi-1/srfi-1.html
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any pair in alist is not a fixnum. If an integer k appears as the key of multiple associations in alist

(i.e. as the car of multiple pairs), then the first association for k is preferred.

(fxmapping->alist

  (alist->fxmapping '((1 . b) (0 . a) (2 . c))))

 => ((0 . a) (1 . b) (2 . c))

(fxmapping->alist

  (alist->fxmapping '((-10 . "yar") (-10 . "worf"))))

 => ((-10 . "yar"))

STklos procedure

(fxmapping k1 v1 k2 v2 … kn vn) 

(constant-fxmapping k1 v1 k2 v2 … kn vn) 

Builds a fixnum map containing the integer keys k1, k2, …, kn with respective associated values v1,

v2, … vn.

It is an error if any of the keys is not an integer, or if the number of arguments is not even.

STklos procedure

(iset n1 n2 … nk) 

(constant-iset n1 n2 … nk) 

Builds a fixnum set containing the fixnums n1, n2, …, nk.

It is an error if any of the keys is not an integer.

STklos procedure

(fxmapping-adjoin fxmap k1 obj1 k2 …) 

Returns a fxmapping containing all of the associations of fxmap as well as the associations (k1,

obj1), (k2, obj2), … The number of key/value arguments must be even.

If any of the keys already have associations in fxmap, the old associations are preserved.

(fxmapping->alist (fxmapping-adjoin (fxmapping 1 'b) 0 'a))



 => ((0 . a) (1 . b))

STklos procedure

(fxmapping-contains? map element) 

Returns true if map contains an association for element, and false otherwise.

STklos procedure

(fxmapping-empty? obj) 

Returns #t is obj is an empty fxmapping and #f if it is an fxmapping containing at least one key. If

obj is not an fxmapping object, an error is sginaled.

STklos procedure

(fxmapping-height trie) 

Returns the height of the internal trie of an fxmap. The expected running time of searches and

insertions is proportional to this value.

STklos procedure

(fxmapping-keys fxmap) 

Returns the keys of fxmap as a list in ascending numerical order.

(fxmapping-keys (fxmapping 137 'a -24 'b -5072 'c))

 => (-5072 -24 137)

STklos procedure

(fxmapping-mutable? obj) 



Returns #t is obj is a mutable fxmapping and #f otherwise.

STklos procedure

(fxmapping-ref/default map k obj) 

If an association (k, v) occurs in map, returns v. Otherwise, returns obj.

(fxmapping-ref/default (fxmapping 36864 'zap) 36864 #f) => zap

(fxmapping-ref/default (fxmapping 0 'a) 36864 #f) => #f

STklos procedure

(fxmapping-size trie) 

Returns the number of key/value pairs in an fxmap.

STklos procedure

(fxmapping-values fxmap) 

Returns the values of fxmap as a list in ascending numerical order of key. That is, if (k1, v1), …,

(kn, vn) are the associations of fxmap ordered so that k1 ⇐ … ⇐ kn, then (fxmapping-values fxmap)

produces the list (v1 … vn).

(fxmapping-values (fxmapping 0 "picard" 1 "riker" 2 "troi"))

 => ("picard" "riker" "troi")

STklos procedure

(fxmapping-union fxmap1 fxmap2 fxmap3 …) 

(fxmapping-intersection fxmap1 fxmap2 fxmap3 …) 

(fxmapping-difference fxmap1 fxmap2 fxmap3 …) 

(fxmapping-xor fxmap1 fxmap2) 

Return a fxmapping whose set of associations is the union, intersection, asymmetric difference, or

symmetric difference of the sets of associations of the fxmaps. Asymmetric difference is extended



to more than two fxmappings by taking the difference between the first fxmapping and the union

of the others. Symmetric difference is not extended beyond two fxmappings. When comparing

associations, only the keys are compared. In case of duplicate keys, associations in the result

fxmapping are drawn from the first fxmapping in which they appear.

(fxmapping->alist (fxmapping-union (fxmapping 0 'a 2 'c)

                                  (fxmapping 1 'b 3 'd)))

   => ((0 . a) (1 . b) (2 . c) (3 . d))

 (fxmapping->alist

  (fxmapping-intersection (fxmapping 0 'a 2 'c)

                          (fxmapping 1 'b 2 'c 3 'd)

                          (fxmapping 2 'c 4 'e)))

    => ((2 . c))

(fxmapping->alist

 (fxmapping-difference (fxmapping 0 'a 1 'b 2 'c)

                       (fxmapping 2 "worf")

                       (fxmapping 1 "data")))

    => ((0 . a))

STklos procedure

(fxmapping? obj) 

Returns #t is obj is an fxmapping object and #f otherwise.

STklos procedure

(iset=? iset1 iset2 iset3 …) 

(iset<? iset1 iset2 iset3 …) 

(iset>? iset1 iset2 iset3 …) 

(iset⇐? iset1 iset2 iset3 …) 

(iset>=? iset1 iset2 iset3 …) 

These procedures return true when each set is equal (iset=?) or a proper subset (iset<?), a proper

superset (iset>?), a subset (iset⇐?) or a superset (iset>=?) of the next one.

(iset=? (iset 1 2 3) (iset 3 1 2))           => #t

(iset<? (iset 3 1 2) (iset 4 2 1 3))         => #t

(iset>=? (iset 3 0 1) (iset 0 1) (iset 0 1)) => #t



STklos procedure

(iset→list set) 

Returns a newly allocated list containing the members of set in increasing numerical order.

(iset->list (iset 2 3 5 7 11)) => (2 3 5 7 11)

STklos procedure

(iset-adjoin set element1 element2 …) 

(iset-adjoin! set element1 element2 …) 

The iset-adjoin procedure returns a newly allocated iset that contains all the values of set, and in

addition each element unless it is already equal to one of the existing or newly added members.

(iset->list (iset-adjoin (iset 1 3 5) 0)) => (0 1 3 5)

The iset-adjoin! procedure is the linear update version of iset-adjoin. In STklos, it is an alias to

iset-adjoin.

STklos procedure

(iset-any? pred? set) 

Returns true if at least one of the elements of set satisfies pred?. Note that this differs from the SRFI

1 analogue because it does not return an element of the iset.

(iset-any odd? (iset 10 2 -3 4))    => #t

(iset-any odd? (iset 10 2 -8 4 0))  => #f

STklos procedure

(iset-open-interval set low high) 

(iset-closed-interval set low high) 

(iset-open-closed-interval set low high) 

(iset-closed-open-interval set low high) 



Procedures that return a subset of set contained in the interval from low to high. The interval may

be open, closed, open below and closed above, or open above and closed below.

(iset->list (iset-open-interval (iset 2 3 5 7 11) 2 7))        => (3 5)

(iset->list (iset-closed-interval (iset 2 3 5 7 11) 2 7))      => (2 3 5 7)

(iset->list (iset-open-closed-interval (iset 2 3 5 7 11) 2 7)) => (3 5 7)

(iset->list (iset-closed-open-interval (iset 2 3 5 7 11) 2 7)) => (2 3 5)

STklos procedure

(iset-contains? set element) 

Returns true if set contains element, and false otherwise.

STklos procedure

(iset-copy set) 

Returns a newly allocated iset containing the elements of set.

STklos procedure

(iset-count pred? set) 

Returns the number of elements of set that satisfy pred? as an exact integer.

(iset-count odd? (iset 10 2 1 -3 9 4 3))  => 4

STklos procedure

(iset-delete set element1 element2 …) 

(iset-delete! set element1 element2 …) 

(iset-delete-all set element-list) 

(iset-delete-all! set element-list) 

The iset-delete procedure returns a newly allocated iset containing all the values of set except for

any that are equal to one or more of the elements. Any element that is not equal to some member of



the set is ignored.

The iset-delete! procedure is the same as iset-delete. is permitted to mutate and return the iset

argument rather than allocating a new iset — but in STklos, it doesn’t.

The iset-delete-all and iset-delete-all! procedures are the same as iset-delete and iset-

delete!, except that they accept a single argument which is a list of elements to be deleted.

(iset->list (iset-delete (iset 1 3 5) 3)) => (1 5)

(iset->list (iset-delete-all (iset 2 3 5 7 11)

                             '(3 4 5)))   => (2 7 11)

STklos procedure

(iset-delete-min set) 

(iset-delete-min! set) 

(iset-delete-max set) 

(iset-delete-max! set) 

Returns two values: the smallest/largest integer n in set and a newly-allocated iset that contains all

elements of set except for n. It is an error if iset is empty.

The iset-delete-min! and iset-delete-max! procedures are the same as iset-delete-min and iset-

delete-max, respectively, except that they are permitted to mutate and return the set argument

instead of allocating a new iset. In STklos, they do not.

(let-values (((n set) (iset-delete-min (iset 2 3 5 7 11))))

  (list n (iset->list set)))

  => (2 (3 5 7 11))

(let-values (((n set) (iset-delete-max (iset 2 3 5 7 11))))

  (list n (iset->list set)))

  => (11 (2 3 5 7))

STklos procedure

(iset-disjoint? iset1 iset2) 

Returns #t if iset1 and iset2 have no elements in common and #f otherwise.

(iset-disjoint? (iset 1 3 5) (iset 0 2 4)) => #t

(iset-disjoint? (iset 1 3 5) (iset 2 3 4)) => #f



STklos procedure

(iset-empty? obj) 

Returns #t is obj is an empty iset and #f if it is an iset containing at least one key. If obj is not an iset

object, an error is sginaled.

STklos procedure

(iset-every? predicate iset) 

Returns #t if every element of set satisfies predicate, or #f otherwise. Note that this differs from the

SRFI 1 analogue because it does not return an element of the iset.

(iset-every? (lambda (x) (< x 5)) (iset -2 -1 1 2)) => #t

(iset-every? positive? (iset -2 -1 1 2))            => #f

STklos procedure

(iset-filter predicate set) 

(iset-filter! predicate set) 

Returns a newly allocated iset containing just the elements of set that satisfy predicate.

(iset->list (iset-filter (lambda (x) (< x 6)) (iset 2 3 5 7 11)))

 => (2 3 5)

iset-filter! is allowed to modify set, but in STklos it does not.

STklos procedure

(iset-find predicate set failure) 

Returns the smallest element of set that satisfies predicate, or the result of invoking failure with no

arguments if there is none.

(iset-find positive? (iset -1 1) (lambda () #f))  => 1



(iset-find zero?     (iset -1 1) (lambda () #f))  => #f

STklos procedure

(iset-fold proc nil set) 

(iset-fold-right proc nil set) 

Invokes proc on each member of set in increasing/decreasing numerical order, passing the result of

the previous invocation as a second argument. For the first invocation, nil is used as the second

argument. Returns the result of the last invocation, or nil if there was no invocation.

(iset-fold + 0 (iset 2 3 5 7 11))            => 28

(iset-fold cons '() (iset 2 3 5 7 11))       => (11 7 5 3 2)

(iset-fold-right cons '() (iset 2 3 5 7 11)) => (2 3 5 7 11)

STklos procedure

(iset-for-each proc set) 

Applies proc to set in increasing numerical order, discarding the returned values. Returns an

unspecified result.

(let ((sum 0))

  (iset-for-each (lambda (x) (set! sum (+ sum x)))

                 (iset 2 3 5 7 11))

  sum)

=> 28

STklos procedure

(iset-height trie) 

Returns the height of the internal trie of an iset. The expected running time of searches and

insertions is proportional to this value.

STklos procedure



(iset-map proc set) 

Applies proc to each element of set in arbitrary order and returns a newly allocated iset, created as

if by iset, which contains the results of the applications. It is an error if proc returns a value that is

not an exact integer.

(iset-map (lambda (x) (* 10 x)) (iset 1 11 21))

     => (iset 10 110 210)

(iset-map (lambda (x) (quotient x 2))

         (iset 1 2 3 4 5))

 => (iset 0 1 2)

STklos procedure

(iset-min set) 

(iset-max set) 

Returns the smallest or largest integer in set, or #f if there is none.

(iset-min (iset 2 3 5 7 11)) => 2

(iset-max (iset 2 3 5 7 11)) => 11

(iset-max (iset))            => #f

STklos procedure

(iset-member element set default) 

Returns the element of set that is equal to element. If element is not a member of set, then default is

returned.

STklos procedure

(iset-mutable? obj) 

Returns #t is obj is a mutable iset and #f otherwise.

STklos procedure



(iset-partition predicate set) 

(iset-partition! predicate set) 

Returns two values: a newly allocated iset that contains just the elements of set that satisfy

predicate and another newly allocated iset that contains just the elements of set that do not satisfy

predicate.

(let-values (((low high) (iset-partition (lambda (x) (< x 6))

                                         (iset 2 3 5 7 11))))

  (list (iset->list low) (iset->list high)))

 => ((2 3 5) (7 11))

STklos procedure

(iset-remove predicate set) 

(iset-remove! predicate set) 

Returns a newly allocated set containing just the elements of set that do not satisfy predicate.

(iset->list (iset-remove (lambda (x) (< x 6)) (iset 2 3 5 7 11)))

 => (7 11)

Iset-remove! is allowed to modify set, but in STklos it does not.

STklos procedure

(iset-search set element failure success) 

(iset-search! iset element failure success) 

Set is searched from lowest to highest value for element. If it is not found, then the failure

procedure is tail-called with two continuation arguments, insert and ignore, and is expected to tail-

call one of them. If element is found, then the success procedure is tail-called with the matching

element of set and two continuations, update and remove, and is expected to tail-call one of them.

The effects of the continuations are as follows (where obj is any Scheme object):

Invoking (insert obj) causes element to be inserted into iset.

Invoking (ignore obj) causes set to remain unchanged.

Invoking (update new-element obj) causes new-element to be inserted into set in place of element.



Invoking (remove obj) causes the matching element of set to be removed from it.

In all cases, two values are returned: an iset and obj.

The iset-search! procedure is the same as iset-search, except that it is permitted to mutate and

return the iset argument rather than allocating a new iset. In STklos, it does not.

STklos procedure

(iset-size set) 

Returns the number of fixnums in set.

STklos procedure

(iset-unfold stop? mapper successor seed) 

Create a newly allocated iset as if by iset. If the result of applying the predicate stop? to seed is true,

return the iset. Otherwise, apply the procedure mapper to seed. The value that mapper returns is

added to the iset. Then get a new seed by applying the procedure successor to seed, and repeat this

algorithm.

(iset->list (iset-unfold (lambda (n) (> n 64))

                         values

                         (lambda (n) (* n 2))

                         2))

=> (2 4 8 16 32 64)

STklos procedure

(iset-union iset1 iset2 iset3 …) 

(iset-intersection iset1 iset2 iset3 …) 

(iset-difference iset1 iset2 iset3 …) 

(iset-xor iset1 iset2) 

(iset-union! iset1 iset2 iset3 …) 

(iset-intersection! iset1 iset2 iset3 …) 

(iset-difference! iset1 iset2 iset3 …) 

(iset-xor! iset1 iset2) 

Return a newly allocated iset that is the union, intersection, asymmetric difference, or symmetric

difference of the isets. Asymmetric difference is extended to more than two isets by taking the

difference between the first iset and the union of the others. Symmetric difference is not extended



beyond two isets. Elements in the result iset are drawn from the first iset in which they appear.

(iset->list (iset-union (iset 0 1 3) (iset 0 2 4))) => (0 1 2 3 4)

(iset->list (iset-intersection (iset 0 1 3 4) (iset 0 2 4))) => (0 4)

(iset->list (iset-difference (iset 0 1 3 4) (iset 0 2) (iset 0 4))) => (1 3)

(iset->list (iset-xor (iset 0 1 3) (iset 0 2 4))) => (1 2 3 4)

The procedures whose name end in ! are linear update procedures. The specification says they may

or may not alter their argument. In STklos they do not: in fact, they are aliases to the pure

functional versions.

STklos procedure

(iset? obj) 

Returns #t is obj is an iset and #f otherwise.

STklos procedure

(isubset= set k) 

(isubset< set k) 

(isubset⇐ set k) 

(isubset> set k) 

(isubset>= set k) 

Procedures that return an integer set containing the elements of set that are equal to, less than, less

than or equal to, greater than, or greater than or equal to k. Note that the result of isubset= contains

at most one element.

(iset->list (isubset= (iset 2 3 5 7 11) 7))  => (7)

(iset->list (isubset< (iset 2 3 5 7 11) 7))  => (2 3 5)

(iset->list (isubset>= (iset 2 3 5 7 11) 7)) => (7 11)

STklos procedure

(list→iset list) 

(list→iset! set list) 

Returns a newly allocated iset, created as if by iset, that contains the elements of list. Duplicate

elements are omitted.



(list->iset '(-3 -1 0 2)) = (iset -3 -1 0 2)

list→iset! may mutate set rather than allocating a new iset, but in STklos it does not.

(iset->list (list->iset! (iset 2 3 5) '(-3 -1 0))) ⇒ (-3 -1 0 2 3 5)

STklos procedure

(make-range-iset start end [step]) 

Returns a newly allocated iset specified by an inclusive lower bound start, an exclusive upper

bound `e`nd, and a step value (default 1), all of which are exact integers. This constructor produces

an iset containing the sequence

start, (+ start step), (+ start (* 2 step)), …, (+ start (* n step)),

where n is the greatest integer such that (+ start (* n step)) < end if step is positive, or such that

(+ start (* n step)) > end if step is negative. It is an error if step is zero.

(iset->list (make-range-iset 25 30))    => (25 26 27 28 29)

(iset->list (make-range-iset -10 10 6)) => (-10 -4 2 8)

(stklos preproc) Library

 This library must be described

A.2. STklos compiler

STklos always compiles code into bytecode before executing — it is not an interpreter, but a

bytecode compiler with an ad-hoc virtual machine. The compiler is available as a standalone tool,

to be used in shell scripts, and also through primitive procedures.

The command stklos-compile compiles a file into STklos bytecode. Please refer to its manpage for

more information.

Compiling files from Scheme programs can be done with the compile-file procedure.

STklos procedure

(compile-file input output) 



(compile-file input output #:prepend cmds #:case-sensitive cs) 

Compiles the file whose name is input into a bytecode executable whose name is output (if compile-

file fails, output file is deleted).

This command accepts two optional keywords:

• #:prepend : it must be a list of expressions, which will be compiled before the rest of the input

file. This can be used to define variables that the compiled program will use (but it does not

affect the compiler itself).

• #:case-sensitive : it tells if the compiler reads symbols in case sensitive mode (as R
7
RS) or not

not (as R
5
RS). By default the compiler is in case sensitive mode.

This procedure will not set the executable bit on the generated file.

A.2.1. Compiler flags

STklos compiler behaviour can be customized by several parameters. Those parameters are

described below.

STklos procedure

(compiler:time-display) 

(compiler:time-display bool) 

This parameter controls if the time used for compiling a file must be displayed or not. It defaults to

#t.

STklos procedure

(compiler:gen-line-number) 

(compiler:gen-line-number bool) 

This parameter controls if the compiled code must embed indications of the file location of the of

the source expressions. When set, this parameter makes programs slower and bigger. However, it

can be useful when debugging a program. This parameter defaults to #f (but is set to `#t when

STklos is launched in debug mode).

STklos procedure

(compiler:show-assembly-code) 

(compiler:show-assembly-code bool) 



This parameter controls if the object files produced by the STklos compiler code must embed a

readable version of the code. The code is placed at the beginning of the produced file. This

parameter defaults to #f.

STklos procedure

(compiler:inline-common-functions) 

(compiler:inline-common-functions bool) 

This parameter controls if the compiler must try to inline the most common Scheme primitives

(simple arithmetic, main list or vector functions, …). Code produced when this parameter is set is

more efficient. Note that the compiler can sometimes be misleaded if those functions are redefined,

hence the existence of this parameter. compiler:inline-common-functions is set by default to #t.

> (compiler:inline-common-functions #t)

> (disassemble-expr '(begin (car '(1 2 3)) (+ a 1)) #t)

000:  CONSTANT             0

002:  IN-CAR

003:  GLOBAL-REF           1

005:  IN-INCR

006:

Constants:

0: (1 2 3)

1: a

> (compiler:inline-common-functions #f)

> (disassemble-expr '(begin (car '(1 2 3)) (+ a 1)) #t)

000:  PREPARE-CALL

001:  CONSTANT-PUSH        0

003:  GREF-INVOKE          1 1

006:  PREPARE-CALL

007:  GLOBAL-REF-PUSH      2

009:  ONE-PUSH

010:  GREF-INVOKE          3 2

013:

Constants:

0: (1 2 3)

1: car

2: a

3: +



STklos procedure

(compiler:source-rewrite) 

(compiler:source-rewrite bool) 

This parameter determines if compiler tries to rewrite some expressions in simpler ones. For

instance, it permit to eliminate the unneeded expression in a begin form, or to evaluate some

simple expression. For instance,

(begin 100 foo (display "Hello") "Hi" (not #f))

is rewritten in

(begin (display "Hello") #t)

This parameter defaults to #t.

STklos procedure

(compiler:keep-formals) 

(compiler:keep-formals bool) 

This parameter controls if the formal parameters of a user procedure is kept at runtime. The formal

parameters can be accessed with the primitive <<"procedure-formals">>. Default value for

compiler:keep-formals is #f.

> (compiler:keep-formals #f)

> (define (foo a b) ( + a b 1))

> foo

#[closure foo]

> (procedure-formals foo)

#f

> (compiler:keep-formals #t)

> (define (foo a b) ( + a b 1))

> foo

#[closure foo (a b)]

> (procedure-formals foo)

(a b)



STklos procedure

(compiler:keep-source) 

(compiler:keep-source bool) 

This parameter controls if the source of a user procedure is kept at runtime. The source of a

procedure can be accessed with the primitive <<"procedure-source">>. Default value for

compiler:keep-source is #f.

> (compiler:keep-source #t)

> (define fib

     (lambda (n) (if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))))

> (pretty-print (procedure-source fib))

(lambda (n)

  (if (< n 2)

    n

    (+ (fib (- n 1))

       (fib (- n 2)))))

STklos procedure

(compiler:unroll-iterations) 

(compiler:unroll-iterations n) 

This parameter controls the number of iterations to be unrolled in loops. Currently, only repeat

loops are unrolled. The argument n must be a positive integer.

STklos procedure

(compiler:peephole-optimizer) 

(compiler:peephole-optimizer bool) 

This parameter determines if the peephole optimizer is used when compiling. The default value for

this parameter is #t. The next example illustrates how it works.

(compiler:peephole-optimizer #f)

(disassemble-expr '(+ a #f) #t)

will print



000:  GLOBAL-REF           0

002:  PUSH

003:  IM-FALSE

004:  IN-ADD2

005:

Now, if we change the parameter,

(compiler:peephole-optimizer #t)

(disassemble-expr '(+ a #f) #t)

then the result is

```scheme

000:  GLOBAL-REF-PUSH      0

002:  IM-FALSE

003:  IN-ADD2

004:

See that the GLOBAL-REF and PUSH were turned by the peephole optimizer into GLOBAL-REF-PUSH.



Appendix B: GNU Free Documentation

License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

B.1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document

``free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute

it, with or without modifying it, either commercially or noncommercially. Secondarily, this License

preserves for the author and publisher a way to get credit for their work, while not being

considered responsible for modifications made by others.

This License is a kind of ``copyleft", which means that derivative works of the document must

themselves be free in the same sense. It complements the GNU General Public License, which is a

copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free

software needs free documentation: a free program should come with manuals providing the same

freedoms that the software does. But this License is not limited to software manuals; it can be used

for any textual work, regardless of subject matter or whether it is published as a printed book. We

recommend this License principally for works whose purpose is instruction or reference.

B.2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by

the copyright holder saying it can be distributed under the terms of this License. Such a notice

grants a world-wide, royalty-free license, unlimited in duration, to use that work under the

conditions stated herein. The ``Document", below, refers to any such manual or work. Any

member of the public is a licensee, and is addressed as "you". You accept the license if you copy,

modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,

either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals

exclusively with the relationship of the publishers or authors of the Document to the Document’s

overall subject (or to related matters) and contains nothing that could fall directly within that

overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section

may not explain any mathematics.) The relationship could be a matter of historical connection with

the subject or with related matters, or of legal, commercial, philosophical, ethical or political

position regarding them.

https://fsf.org/


The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those

of Invariant Sections, in the notice that says that the Document is released under this License. If a

section does not fit the above definition of Secondary then it is not allowed to be designated as

Invariant. The Document may contain zero Invariant Sections. If the Document does not identify

any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-

Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover

Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format

whose specification is available to the general public, that is suitable for revising the document

straightforwardly with generic text editors or (for images composed of pixels) generic paint

programs or (for drawings) some widely available drawing editor, and that is suitable for input to

text formatters or for automatic translation to a variety of formats suitable for input to text

formatters. A copy made in an otherwise Transparent file format whose markup, or absence of

markup, has been arranged to thwart or discourage subsequent modification by readers is not

Transparent. An image format is not Transparent if used for any substantial amount of text. A copy

that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo

input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-

conforming simple HTML, PostScript or PDF designed for human modification. Examples of

transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats

that can be read and edited only by proprietary word processors, SGML or XML for which the DTD

and/or processing tools are not generally available, and the machine-generated HTML, PostScript or

PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are

needed to hold, legibly, the material this License requires to appear in the title page. For works in

formats which do not have any title page as such, "Title Page" means the text near the most

prominent appearance of the work’s title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ

or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ

stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications",

"Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the

Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License

applies to the Document. These Warranty Disclaimers are considered to be included by reference in

this License, but only as regards disclaiming warranties: any other implication that these Warranty

Disclaimers may have is void and has no effect on the meaning of this License.

B.3. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or



noncommercially, provided that this License, the copyright notices, and the license notice saying

this License applies to the Document are reproduced in all copies, and that you add no other

conditions whatsoever to those of this License. You may not use technical measures to obstruct or

control the reading or further copying of the copies you make or distribute. However, you may

accept compensation in exchange for copies. If you distribute a large enough number of copies you

must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display

copies.

B.4. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the

Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you

must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover

Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and

legibly identify you as the publisher of these copies. The front cover must present the full title with

all words of the title equally prominent and visible. You may add other material on the covers in

addition. Copying with changes limited to the covers, as long as they preserve the title of the

Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones

listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must

either include a machine-readable Transparent copy along with each Opaque copy, or state in or

with each Opaque copy a computer-network location from which the general network-using public

has access to download using public-standard network protocols a complete Transparent copy of

the Document, free of added material. If you use the latter option, you must take reasonably

prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this

Transparent copy will remain thus accessible at the stated location until at least one year after the

last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition

to the public.

It is requested, but not required, that you contact the authors of the Document well before

redistributing any large number of copies, to give them a chance to provide you with an updated

version of the Document.

B.5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2

and 3 above, provided that you release the Modified Version under precisely this License, with the

Modified Version filling the role of the Document, thus licensing distribution and modification of

the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the

Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and

from those of previous versions (which should, if there were any, be listed in the History section



of the Document). You may use the same title as a previous version if the original publisher of

that version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for authorship

of the modifications in the Modified Version, together with at least five of the principal authors

of the Document (all of its principal authors, if it has fewer than five), unless they release you

from this requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

• D. Preserve all the copyright notices of the Document.

• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.

• F. Include, immediately after the copyright notices, a license notice giving the public permission

to use the Modified Version under the terms of this License, in the form shown in the

Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts

given in the Document’s license notice.

• H. Include an unaltered copy of this License.

• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least

the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If

there is no section Entitled "History" in the Document, create one stating the title, year, authors,

and publisher of the Document as given on its Title Page, then add an item describing the

Modified Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a

Transparent copy of the Document, and likewise the network locations given in the Document

for previous versions it was based on. These may be placed in the "History" section. You may

omit a network location for a work that was published at least four years before the Document

itself, or if the original publisher of the version it refers to gives permission.

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the

section, and preserve in the section all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.

Section numbers or the equivalent are not considered part of the section titles.

• M. Delete any section Entitled "Endorsements". Such a section may not be included in the

Modified Version.

• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with

any Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary

Sections and contain no material copied from the Document, you may at your option designate

some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections

in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of



your Modified Version by various parties—for example, statements of peer review or that the text

has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as

a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of

Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)

any one entity. If the Document already includes a cover text for the same cover, previously added

by you or by arrangement made by the same entity you are acting on behalf of, you may not add

another; but you may replace the old one, on explicit permission from the previous publisher that

added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their

names for publicity for or to assert or imply endorsement of any Modified Version.

B.6. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the

terms defined in section 4 above for modified versions, provided that you include in the

combination all of the Invariant Sections of all of the original documents, unmodified, and list them

all as Invariant Sections of your combined work in its license notice, and that you preserve all their

Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant

Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same

name but different contents, make the title of each such section unique by adding at the end of it, in

parentheses, the name of the original author or publisher of that section if known, or else a unique

number. Make the same adjustment to the section titles in the list of Invariant Sections in the

license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original

documents, forming one section Entitled "History"; likewise combine any sections Entitled

"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled

"Endorsements".

B.7. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this

License, and replace the individual copies of this License in the various documents with a single

copy that is included in the collection, provided that you follow the rules of this License for

verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this

License, provided you insert a copy of this License into the extracted document, and follow this

License in all other respects regarding verbatim copying of that document.

B.8. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents



or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the

copyright resulting from the compilation is not used to limit the legal rights of the compilation’s

users beyond what the individual works permit. When the Document is included in an aggregate,

this License does not apply to the other works in the aggregate which are not themselves derivative

works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the

Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed

on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if

the Document is in electronic form. Otherwise they must appear on printed covers that bracket the

whole aggregate.

B.9. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the

Document under the terms of section 4. Replacing Invariant Sections with translations requires

special permission from their copyright holders, but you may include translations of some or all

Invariant Sections in addition to the original versions of these Invariant Sections. You may include

a translation of this License, and all the license notices in the Document, and any Warranty

Disclaimers, provided that you also include the original English version of this License and the

original versions of those notices and disclaimers. In case of a disagreement between the

translation and the original version of this License or a notice or disclaimer, the original version

will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the

requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual

title.

B.10. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided

under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and

will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright

holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally

terminates your license, and (b) permanently, if the copyright holder fails to notify you of the

violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the

copyright holder notifies you of the violation by some reasonable means, this is the first time you

have received notice of violation of this License (for any work) from that copyright holder, and you

cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have

received copies or rights from you under this License. If your rights have been terminated and not

permanently reinstated, receipt of a copy of some or all of the same material does not give you any

rights to use it.



B.11. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation

License from time to time. Such new versions will be similar in spirit to the present version, but

may differ in detail to address new problems or concerns. See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document specifies that

a particular numbered version of this License "or any later version" applies to it, you have the

option of following the terms and conditions either of that specified version or of any later version

that has been published (not as a draft) by the Free Software Foundation. If the Document does not

specify a version number of this License, you may choose any version ever published (not as a

draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which

future versions of this License can be used, that proxy’s public statement of acceptance of a version

permanently authorizes you to choose that version for the Document.

B.12. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that

publishes copyrightable works and also provides prominent facilities for anybody to edit those

works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor

Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus

published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative

Commons Corporation, a not-for-profit corporation with a principal place of business in San

Francisco, California, as well as future copyleft versions of that license published by that same

organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another

Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were

first published under this License somewhere other than this MMC, and subsequently incorporated

in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus

incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the

same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

https://www.gnu.org/licenses/


B.13. ADDENDUM: How to use this License for your

documents

To use this License in a document you have written, include a copy of the License in the document

and put the following copyright and license notices just after the title page:

    Copyright (C)  YEAR  YOUR NAME.

    Permission is granted to copy, distribute and/or modify this document

    under the terms of the GNU Free Documentation License, Version 1.3

    or any later version published by the Free Software Foundation;

    with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

    A copy of the license is included in the section entitled "GNU

    Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with … Texts."

line with this:

    with the Invariant Sections being LIST THEIR TITLES, with the

    Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge

those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these

examples in parallel under your choice of free software license, such as the GNU General Public

License, to permit their use in free software.
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